RipMC: RIPPER for Multiclass Classification

被引:18
|
作者
Asadi, Shahrokh [1 ]
Shahrabi, Jamal [1 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn, POB 15875-4413, Tehran, Iran
关键词
RIPPER; Multiclass classification; Rule learning; Pruning; SUBGROUP DISCOVERY; RULE; ALGORITHM; TREE;
D O I
10.1016/j.neucom.2016.01.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A major challenge in extending RIPPER for multiclass classification problems is the order of learning the classes. In this paper, RIPPER for Multiclass Classification (RipMC) is presented, which extends several aspects of RIPPER. In RipMC, all classes are initially given an equal opportunity with a Parallel Rule Learning (PRL) to generate their best rules in a global search, causing the rules in the decision list to be reordered, which improves performance in classifying new instances. Next, the most complex and costly class, which will be set as the default class in the subsequent execution of the algorithm, is identified according to a new measure called MaxDL. Finally, a new rule evaluation measure, namely LogLaplace, is presented for better pruning of the rules. The performance of the proposed algorithm and RIPPER is compared using 18 data sets. Experimental results show that RipMC significantly outperforms the original RIPPER. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 33
页数:15
相关论文
共 50 条
  • [41] Exploring multiobjective training in multiclass classification
    Raimundo, Marcos M.
    Drumond, Thalita F.
    Marques, Alan Caio R.
    Lyra, Christiano
    Rocha, Anderson
    Von Zuben, Fernando J.
    NEUROCOMPUTING, 2021, 435 : 307 - 320
  • [42] AN ADAPTIVE PROCEDURE FOR MULTICLASS PATTERN CLASSIFICATION
    WEE, WG
    FU, KS
    IEEE TRANSACTIONS ON COMPUTERS, 1968, C 17 (02) : 178 - &
  • [43] Multiclass Probabilistic Classification Vector Machine
    Lyu, Shengfei
    Tian, Xing
    Li, Yang
    Jiang, Bingbing
    Chen, Huanhuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 3906 - 3919
  • [44] Divide and Conquer: Neuroevolution for Multiclass Classification
    McDonnell, Tyler
    Andoni, Sari
    Bonab, Elmira
    Cheng, Sheila
    Choi, Jun-Hwan
    Goode, Jimmie
    Moore, Keith
    Sellers, Gavin
    Schrum, Jacob
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 474 - 481
  • [45] Probabilistic class hierarchies for multiclass classification
    Silva-Palacios, Daniel
    Ferri, Cesar
    Jose Ramirez-Quintana, Maria
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 26 : 254 - 263
  • [46] The dimension of ECOCs for multiclass classification problems
    Pimenta, Edgar
    Gama, Joao
    Carvalho, Andre
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2008, 17 (03) : 433 - 447
  • [47] Kernel multilogit algorithm for multiclass classification
    Dalmau, Oscar
    Alarcon, Teresa E.
    Gonzalez, Graciela
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 82 : 199 - 206
  • [48] Hybrid SVM for Multiclass Arrhythmia Classification
    Joshi, Aniruddha J.
    Chandran, Sharat
    Jayaraman, V. K.
    Kulkarni, B. D.
    2009 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2009, : 287 - +
  • [49] Latent Subspace Representation for Multiclass Classification
    Hu, Jing
    Zhang, Changqing
    Wang, Xiao
    Zhu, Pengfei
    Wang, Zheng
    Hu, Qinghua
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 163 - 176
  • [50] Multiclass Event Classification from Text
    Ali, Daler
    Missen, Malik Muhammad Saad
    Husnain, Mujtaba
    SCIENTIFIC PROGRAMMING, 2021, 2021