Quantum-Dots Photosensor with Wide Bandgap P-Type and N-Type Oxide Semiconductors for High Detectivity and Responsivity

被引:24
|
作者
Kim, Yoseob [1 ]
Kim, Jeonggi [1 ]
Kim, Hyo-Min [1 ]
Jang, Jin [1 ]
机构
[1] Kyung Hee Univ, Dept Informat Display, ADRC, 26 Kyungheedae Ro, Seoul 02447, South Korea
来源
ADVANCED MATERIALS TECHNOLOGIES | 2020年 / 5卷 / 01期
关键词
high detectivity; low dark current; photosensors; quantum-dots photodiodes; wide bandgap oxides; LIGHT-EMITTING DEVICES; TIN-OXIDE; THIN-FILM; PHOTODIODES; PERFORMANCE; PHOTODETECTORS; NANOCRYSTALS; LAYER; RECOMBINATION; TRANSPARENT;
D O I
10.1002/admt.201900857
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The photodiode is a promising architecture for photodetection because of its fast response and high external quantum efficiency (EQE). The photodiode requires high detectivity, responsivity, and low dark current for various applications. Here, a new structure of quantum-dots (QD) photodiode is reported for ultraviolet (UV), blue, green, and red light sensing using a red QD layer between p-type and n-type metal-oxide semiconductors. CdZnSeS/ZnS QD is used for photoabsorption with p-type Cu2SnS3-Ga2O3 and n-type Li doped ZnO (LZO) for carrier collection. The QD photodiode has a low dark current density of 2.08 nA cm(-2) at -1 V leading to high rectification ratio of approximate to 10(5). The QD photodiode shows superior properties with responsivity of 0.258 A W-1 and detectivity of 1.00 x 10(13) Jones at -1 V under green illumination. The rise and fall times of QD photodiode are 2.1 and 2.6 ms, respectively. The QD photodiode on a flexible polyimide (PI) substrate is also demonstrated, exhibiting stable characteristics under bending test of 20 000 cycles at a bending radius of 0.32 mm.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Synergistic effect of p-type and n-type dopants in semiconductors for efficient electrocatalytic water splitting
    Kutlusoy, Tugce
    Divanis, Spyridon
    Pittkowski, Rebecca
    Marina, Riccardo
    Frandsen, Adrian M.
    Minhova-Macounova, Katerina
    Nebel, Roman
    Zhao, Dongni
    Mertens, Stijn F. L.
    Hoster, Harry
    Krtil, Petr
    Rossmeisl, Jan
    CHEMICAL SCIENCE, 2022, 13 (46) : 13879 - 13892
  • [22] Selective Growth of n-Type Nanoparticles on p-Type Semiconductors for Z-Scheme Photocatalysis
    Miyauchi, Masahiro
    Nukui, Yuuya
    Atarashi, Daiki
    Sakai, Etsuo
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (19) : 9770 - 9776
  • [23] p-Type and n-type quaterthiophene based semiconductors for thin film transistors operating in air?
    Videlot-Ackermann, C.
    Zhang, J.
    Ackermann, J.
    Brisset, H.
    Didane, Y.
    Raynal, P.
    El Kassmi, A.
    Fages, F.
    CURRENT APPLIED PHYSICS, 2009, 9 (01) : 26 - 33
  • [24] DIFFERENT P(IN) ANTISITES IN N-TYPE AND P-TYPE INP
    SUN, HJ
    GISLASON, HP
    RONG, CF
    WATKINS, GD
    PHYSICAL REVIEW B, 1993, 48 (23): : 17092 - 17105
  • [25] Complementary Integrated Circuits Based on n-Type and p-Type Oxide Semiconductors for Applications Beyond Flat-Panel Displays
    Li, Yunpeng
    Zhang, Jiawei
    Yang, Jin
    Yuan, Yvzhuo
    Hu, Zhenjia
    Lin, Zhaojun
    Song, Aimin
    Xin, Qian
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (02) : 950 - 956
  • [26] PdIn contacts to n-type and p-type GaP
    Lin, CF
    Ingerly, DB
    Chang, YA
    APPLIED PHYSICS LETTERS, 1996, 69 (23) : 3543 - 3545
  • [27] THERMOMAGNETIC PROPERTIES OF N-TYPE AND P-TYPE HGTE
    JEDRZEJCZAK, A
    DIETL, T
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1976, 76 (02): : 737 - 751
  • [28] PHOTOELECTROCHEMISTRY OF N-TYPE AND P-TYPE SILICON IN ACETONITRILE
    BYKER, HJ
    WOOD, VE
    AUSTIN, AE
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (09) : 1982 - 1987
  • [29] PARAMAGNETIC RESONANCE IN N-TYPE AND P-TYPE SILICON
    WILLENBROCK, FK
    BLOEMBERGEN, N
    PHYSICAL REVIEW, 1953, 91 (05): : 1281 - 1281
  • [30] Persistent n-type photoconductivity in p-type ZnO
    Claflin, B
    Look, DC
    Park, SJ
    Cantwell, G
    JOURNAL OF CRYSTAL GROWTH, 2006, 287 (01) : 16 - 22