Subquadratic Polynomial Multiplication over GF(2m) Using Trinomial Bases and Chinese Remaindering

被引:0
|
作者
Schost, Eric [1 ]
Hariri, Arash [2 ]
机构
[1] Univ Western Ontario, Dept Comp Sci, ORCCA, London, ON, Canada
[2] Univ Western Ontario, Dept Elect & Comp Sci, London, ON, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Montgomery multiplication; Chinese remainder theorem; finite fields; subquadratic area complexity; MODULAR MULTIPLICATION; FIELDS; MULTIPLIERS; MONTGOMERY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Following the previous work by Bajard-Didier-Kornerup, McLaughlin, Mihailescu and Bajard-Imbert-Jullien, we present an algorithm for modular polynomial multiplication that implements the Montgomery algorithm in a residue basis; here, as in Bajard et al.'s work, the moduli are trinomials over F-2. Previous work used a second residue basis to perform the final division. In this paper, we show how to keep the same residue basis, inspired by l'Hospital rule. Additionally, applying a divide-and-conquer approach to the Chinese remaindering, we obtain improved estimates on the number of additions for some useful degree ranges.
引用
收藏
页码:361 / +
页数:3
相关论文
共 50 条
  • [41] Low Power Semi-systolic Architectures for Polynomial-Basis Multiplication over GF(2m) Using Progressive Multiplier Reduction
    Atef Ibrahim
    Fayez Gebali
    Journal of Signal Processing Systems, 2016, 82 : 331 - 343
  • [42] Low Power Semi-systolic Architectures for Polynomial-Basis Multiplication over GF(2m) Using Progressive Multiplier Reduction
    Ibrahim, Atef
    Gebali, Fayez
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2016, 82 (03): : 331 - 343
  • [43] GF(2m) Multiplier using Polynomial Residue Number System
    Chu, Junfeng
    Benaissa, Mohammed
    2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2008), VOLS 1-4, 2008, : 1514 - 1517
  • [44] New hardware architecture for multiplication over GF(2m) and comparisons with normal and polynomial basis multipliers for elliptic curve cryptography
    Kwon, Soonhak
    Kwnon, Taekyoung
    Park, Young-Ho
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2008, E91A (01) : 236 - 243
  • [45] A fast parallel implementation of elliptic curve point multiplication over GF(2m)
    Rodríguez-Henríquez, F
    Saqib, NA
    Díaz-Pérez, A
    MICROPROCESSORS AND MICROSYSTEMS, 2004, 28 (5-6) : 329 - 339
  • [46] A combined multiplication/division algorithm for efficient design of ECC over GF(2m)
    Lin, Wen-Ching
    Chen, Jun-Hong
    Shieh, Ming-Der
    Wu, Chien-Ming
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 974 - 977
  • [47] Parallel Montgomery multiplication and squaring over GF(2m) based on cellular automata
    Ku, KM
    Ha, KJ
    Yoo, WH
    Koo, KY
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 4, 2004, 3046 : 196 - 205
  • [48] Accelerating elliptic curve scalar multiplication over GF(2m) on graphic hardwares
    Seo, Seog Chung
    Kim, Taehong
    Hong, Seokhie
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2015, 75 : 152 - 167
  • [49] Low complexity semi-systolic multiplication architecture over GF(2m)
    Choi, Se-Hyu
    Lee, Keon-Jik
    IEICE ELECTRONICS EXPRESS, 2014, 11 (20):
  • [50] Efficient Parallel and Serial Systolic Structures for Multiplication and Squaring Over GF(2m)
    Ibrahim, Atef
    CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2019, 42 (02): : 114 - 120