Transformations of elliptic hypergeometric integrals

被引:94
|
作者
Rains, Eric M. [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
BETA; REPRESENTATION; SERIES; POLYNOMIALS; EQUATIONS; MATRICES;
D O I
10.4007/annals.2010.171.169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a pair of transformations relating elliptic hypergeometric integrals of different dimensions, corresponding to the root systems BC and An; as a special case, we recover some integral identities conjectured by van Diejen and Spiridonov. For BC, we also consider their "Type II" integral. Their proof of that integral, together with our transformation, gives rise to pairs of adjoint integral operators; a different proof gives rise to pairs of adjoint difference operators. These allow us to construct a family of biorthogonal abelian functions generalizing the Koornwinder polynomials, and satisfying the analogues of the Macdonald conjectures. Finally, we discuss some transformations of Type II-style integrals. In particular, we find that adding two parameters to the Type II integral gives an integral invariant under an appropriate action of the Weyl group E-7.
引用
收藏
页码:169 / 243
页数:75
相关论文
共 50 条
  • [31] Hypergeometric integrals and arrangements
    Orlik, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 417 - 424
  • [32] Complex hypergeometric integrals
    Mimachi, Katsuhisa
    REPRESENTATION THEORY, SPECIAL FUNCTIONS AND PAINLEVE EQUATIONS - RIMS 2015, 2018, 76 : 469 - 485
  • [33] SOME FAMILIES OF GENERALIZED ELLIPTIC-TYPE INTEGRALS AND THE ASSOCIATED MULTIPLE HYPERGEOMETRIC FUNCTIONS
    Srivastava, H. M.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (05): : 771 - 786
  • [34] Elliptic Hypergeometric Functions
    van de Bult, Fokko J.
    SYMMETRIES AND INTEGRABILITY OF DIFFERENCE EQUATIONS, 2017, : 43 - 74
  • [35] Certain integrals of generalized hypergeometric and confluent hypergeometric functions
    Kumar, Dinesh
    SIGMAE, 2016, 5 (02): : 8 - 18
  • [36] Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R-functions
    Carlson, B. C.
    MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1309 - 1318
  • [37] Massive one-loop conformal Feynman integrals and quadratic transformations of multiple hypergeometric series
    Ananthanarayan, B.
    Banik, Sumit
    Friot, Samuel
    Ghosh, Shayan
    PHYSICAL REVIEW D, 2021, 103 (09)
  • [38] STOKES MATRICES OF HYPERGEOMETRIC INTEGRALS
    Glutsyuk, Alexey
    Sabot, Christophe
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (01) : 291 - 317
  • [39] Hypergeometric structures in Feynman integrals
    Bluemlein, J.
    Saragnese, M.
    Schneider, C.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2023, 91 (05) : 591 - 649
  • [40] Hypergeometric structures in Feynman integrals
    J. Blümlein
    M. Saragnese
    C. Schneider
    Annals of Mathematics and Artificial Intelligence, 2023, 91 : 591 - 649