Fractional differential equations and the Schrodinger equation

被引:46
|
作者
Ben Adda, F
Cresson, J
机构
[1] Univ Franche Comte, CNRS, UMR 6623, Equipe Math Besancon, F-2503 Besancon, France
[2] King Fahd Univ Petr & Minerals, Hail Community Coll, Dept Math Sci, Hail, Saudi Arabia
[3] ISMANS, F-72000 Le Mans, France
关键词
D O I
10.1016/j.amc.2003.12.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a previous paper, we defined, following a previous work of Kolvankar and Gangal, a notion of alpha-derivative, 0 < alpha < 1. In this article, we study alpha-differential equations associated to our fractional calculus. We then discuss a fundamental problem concerning the Schrodinger equation in the framework of Nottale's scale relativity theory. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 345
页数:23
相关论文
共 50 条
  • [21] Fractional logarithmic Schrodinger equations
    d'Avenia, Pietro
    Squassina, Marco
    Zenari, Marianna
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) : 5207 - 5216
  • [22] On fractional Schrodinger equation in α-dimensional fractional space
    Eid, Rajeh
    Muslih, Sami I.
    Baleanu, Dumitru
    Rabei, E.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) : 1299 - 1304
  • [23] A new fractional sub-equation method for fractional partial differential equations
    Wen, Chuanbao
    Zheng, Bin
    WSEAS Transactions on Mathematics, 2013, 12 (05) : 564 - 571
  • [24] A generalized fractional sub-equation method for nonlinear fractional differential equations
    Bekir, Ahmet
    Aksoy, Esin
    Guner, Ozkan
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 : 78 - 83
  • [25] A STABLE SECOND ORDER OF ACCURACY DIFFERENCE SCHEME FOR A FRACTIONAL SCHRODINGER DIFFERENTIAL EQUATION
    Ashyralyev, A.
    Hicdurmaz, B.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2018, 17 (01) : 10 - 21
  • [26] THE MODIFIED SIMPLE EQUATION METHOD FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS
    Kaplan, Melike
    Bekir, Ahmet
    Akbulut, Arzu
    Aksoy, Esin
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (9-10): : 1374 - 1383
  • [27] Equivalence Theorems of Fractional Differential Equations and the Volterra Integral Equation
    Xu, Jia
    Zhong, Shouming
    2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 759 - 763
  • [28] ON THE SOLUTION OF KINETIC EQUATION FOR KATUGAMPOLA TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
    Ahmed, Wagdi F. S.
    Pawar, D. D.
    Salamooni, Ahmad Y. A.
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2021, 19 (01) : 125 - 134
  • [29] INTEGRO-DIFFERENTIAL SCHRODINGER-EQUATION AS AN EXTENSION OF THE DIFFERENTIAL SCHRODINGER-EQUATION
    BASEIA, B
    PHYSICAL REVIEW A, 1988, 38 (03): : 1632 - 1635
  • [30] Comment on "Fractional quantum mechanics" and "Fractional Schrodinger equation"
    Wei, Yuchuan
    PHYSICAL REVIEW E, 2016, 93 (06)