Static and Dynamic Electrowetting of an Ionic Liquid in a Solid/Liquid/Liquid System

被引:86
|
作者
Paneru, Mani [1 ]
Priest, Craig [1 ]
Sedev, Rossen [1 ]
Ralston, John [1 ]
机构
[1] Univ S Australia, Ian Wark Res Inst, ARC Special Res Ctr Particle & Mat Interfaces, Mawson Lakes, SA 5095, Australia
基金
澳大利亚研究理事会;
关键词
ELECTRICAL DOUBLE-LAYER; ON-A-CHIP; POLYMER-FILMS; VOLTAGE; WATER; DROPLETS; BEHAVIOR; SURFACE; CHARGE;
D O I
10.1021/ja9106397
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A droplet of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, bmim center dot BF4) is immersed in an immiscible liquid (n-hexadecane) and electrowetted on a flat Teflon AF1600-coated ITO electrode. The static contact angle decreases significantly when voltage is applied between the droplet and the electrode: from 145 degrees down to 50 degrees (with DC voltage) and 15 degrees (with AC voltage). The electrowetting curves (contact angle versus voltage) are similar to the ones obtained in other solid/liquid/vapor and solid/liquid/liquid systems: symmetric with respect to zero voltage and correctly described by Young-Lippmann equation below saturation. The reversibility is excellent and contact angle hysteresis is minimal (similar to 2 degrees). The step size used in applying the DC voltage and the polarity of the voltage are unimportant. The saturation contact angle cannot be predicted with the simple zero-interfacial tension theory. Spreading (after applying a DC voltage) and retraction (after switching off the voltage) of the droplet is monitored. The base area of the droplet varies exponentially during wetting (exponential saturation) and dewetting (exponential decay). The characteristic time is 20 ms for spreading and 35 ms for retraction (such asymmetry is not observed with water glycerol mixtures of a similar viscosity). The spreading kinetics (dynamic contact angle versus contact line speed) can be described by the hydrodynamic model (Voinov's equation) for small contact angles and by the molecular-kinetic model (Blake's equation) for large contact angles. The role of viscous and molecular dissipation follows the scheme outlined by Brochard-Wyart and de Gennes.
引用
收藏
页码:8301 / 8308
页数:8
相关论文
共 50 条
  • [21] Static and Dynamic Scattering from Polysulfobetaine Immobilized on Silica Nanoparticle in Ionic Liquid
    Kikuchi, Moriya
    Terayama, Yuki
    Hoshino, Taiki
    Kobayashi, Motoyasu
    Ogawa, Hiroki
    Masunaga, Hiroyasu
    Takahara, Atsushi
    FUTURE TRENDS IN SOFT MATERIALS RESEARCH WITH ADVANCED LIGHT SOURCES, 2011, 272
  • [22] Liquid motor driven by electrowetting
    Takei, A.
    Binh-Khiem, N.
    Iwase, E.
    Matsumoto, K.
    Shimoyama, I.
    MEMS 2008: 21ST IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2008, : 42 - 45
  • [23] Molecular Dynamics Simulation on the Electrowetting Behaviors of the Ionic Liquid [BMIM][BF4] on a Solid Substrate
    Song, Fenhong
    Ma, Bing
    Fan, Jing
    Chen, Qicheng
    Li, Ben Q.
    LANGMUIR, 2019, 35 (30) : 9753 - 9760
  • [24] Ultralow Voltage Electrowetting on a Solidlike Ionic-Liquid Dielectric Layer
    Zhang, Xiaoning
    Cai, Yuguang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (08) : 2289 - 2292
  • [25] A DYNAMIC ANALOG MODEL OF AN IONIC LIQUID
    ZARZYCKI, J
    JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1969, : 153 - &
  • [26] Structural and dynamic microheterogeneity of ionic liquid
    V. I. Pergushov
    N. A. Chumakova
    M. Ya. Mel’nikov
    G. Grampp
    A. I. Kokorin
    Doklady Physical Chemistry, 2009, 425 : 69 - 72
  • [27] Structural and dynamic microheterogeneity of ionic liquid
    Pergushov, V. I.
    Chumakova, N. A.
    Mel'nikov, M. Ya.
    Grampp, G.
    Kokorin, A. I.
    DOKLADY PHYSICAL CHEMISTRY, 2009, 425 : 69 - 72
  • [28] Correcting the monochromatic aberration of the electrowetting liquid lens focusing system using liquid crystal lens
    Zhang Jia-lun
    Yu Tao
    Huang Zhi-yu
    Pan Guo-bin
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (07) : 954 - 963
  • [29] Ionic liquid-in-ionic liquid nanoemulsions
    Li, Jianshen
    Zhang, Jianling
    Han, Buxing
    Peng, Li
    Yang, Guanying
    CHEMICAL COMMUNICATIONS, 2012, 48 (85) : 10562 - 10564