REFLEXIVITY FOR SPACES OF REGULAR OPERATORS ON BANACH LATTICES

被引:1
|
作者
Li, Yongjin [1 ]
Bu, Qingying [2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
TENSOR-PRODUCTS;
D O I
10.1090/proc/16018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if Banach lattices E and F are reflexive and each positive linear operator from E to F is compact then L-r( E; F), the space of all regular linear operators from E to F, is reflexive. Conversely, if E* or F has the bounded regular approximation property then the reflexivity of L-r( E; F) implies that each positive linear operator from E to F is compact. Analogously we also study the reflexivity for the space of regular multilinear operators on Banach lattices.
引用
收藏
页码:4811 / 4818
页数:8
相关论文
共 50 条
  • [41] Reflexivity of Spaces of Polynomials on Direct Sums of Banach Spaces
    Aguiar, Adriano L.
    Moraes, Luiza A.
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2009, 45 (02) : 351 - 361
  • [42] BANACH-LATTICES OF OPERATORS
    ORNO, P
    ISRAEL JOURNAL OF MATHEMATICS, 1974, 19 (03) : 264 - 265
  • [43] DOMINATED OPERATORS FROM LATTICE-NORMED SPACES TO SEQUENCE BANACH LATTICES
    Abasov, Nariman
    Megahed, Abd El Monem
    Pliev, Marat
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (04): : 646 - 655
  • [44] Mean ergodicity on Banach lattices and Banach spaces
    Eduard Yu. Emel’yanov
    Manfred P.H. Wolff
    Archiv der Mathematik, 1999, 72 : 214 - 218
  • [45] Sequence spaces on Banach lattices
    Botelho, Geraldo
    Causey, Ryan
    Navoyan, Khazhak V.
    RECENT TRENDS IN OPERATOR THEORY AND APPLICATIONS, 2019, 737 : 1 - 24
  • [46] Banach spaces and Banach lattices of singular functions
    Bernal-Gonzalez, L.
    Fernandez-Sanchez, J.
    Martinez-Gomez, M. E.
    Seoane-Sepulveda, J. B.
    STUDIA MATHEMATICA, 2021, 260 (02) : 167 - 193
  • [47] Mean ergodicity on Banach lattices and Banach spaces
    Emel'yanov, EY
    Wolff, MPH
    ARCHIV DER MATHEMATIK, 1999, 72 (03) : 214 - 218
  • [48] BASES OF TYPE P AND REFLEXIVITY OF BANACH SPACES
    HOLUB, JR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (02): : 404 - &
  • [49] w*-Basic sequences and reflexivity of Banach spaces
    John, K
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (03) : 677 - 681
  • [50] Duality, reflexivity and atomic decompositions in Banach spaces
    Carando, Daniel
    Lassalle, Silvia
    STUDIA MATHEMATICA, 2009, 191 (01) : 67 - 80