REFLEXIVITY FOR SPACES OF REGULAR OPERATORS ON BANACH LATTICES

被引:1
|
作者
Li, Yongjin [1 ]
Bu, Qingying [2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
TENSOR-PRODUCTS;
D O I
10.1090/proc/16018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if Banach lattices E and F are reflexive and each positive linear operator from E to F is compact then L-r( E; F), the space of all regular linear operators from E to F, is reflexive. Conversely, if E* or F has the bounded regular approximation property then the reflexivity of L-r( E; F) implies that each positive linear operator from E to F is compact. Analogously we also study the reflexivity for the space of regular multilinear operators on Banach lattices.
引用
收藏
页码:4811 / 4818
页数:8
相关论文
共 50 条
  • [1] Regular operators between Banach lattices
    Wickstead, A. W.
    Positivity, 2007, : 255 - 279
  • [2] Regular norm of operators on Banach lattices
    Chen, Zili
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 2000, 17 (02): : 58 - 64
  • [3] Imbedding of the images of operators and reflexivity of Banach spaces
    R. V. Vershinin
    Ukrainian Mathematical Journal, 1999, 51 (2) : 293 - 296
  • [4] ON SOME SUBLATTICES OF REGULAR OPERATORS ON BANACH LATTICES
    Aqzzouz, Belmesnaoui
    Nouira, Redouane
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2008, 14 (04): : 297 - 301
  • [5] INTEGRAL REPRESENTATION OF REGULAR OPERATORS ON BANACH LATTICES
    NAGEL, RJ
    SCHLOTTE.U
    MATHEMATISCHE ZEITSCHRIFT, 1972, 127 (03) : 293 - &
  • [6] Property of reflexivity for multiplication operators on Banach function spaces
    Bahmann Yousefi
    Fatemeh Zangeneh
    Proceedings - Mathematical Sciences, 2018, 128
  • [7] Property of reflexivity for multiplication operators on Banach function spaces
    Yousefi, Bahmann
    Zangeneh, Fatemeh
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (03):
  • [8] Reflexivity of Banach -modules via the reflexivity of Banach lattices
    Kitover, Arkady
    Orhon, Mehmet
    POSITIVITY, 2014, 18 (03) : 475 - 488
  • [9] (p,q)-Regular operators between Banach lattices
    Sanchez Perez, Enrique A.
    Tradacete, Pedro
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (02): : 321 - 350
  • [10] Bases in the space of regular multilinear operators on Banach lattices
    Ji, Donghai
    Navoyan, Khazhak
    Bu, Qingying
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 803 - 821