Electric currents at semiconductor surfaces from the perspective of drift-diffusion equations

被引:3
|
作者
Lis, Jakub [1 ]
机构
[1] Jagiellonian Univ, Ctr Nanometer Scale Sci & Adv Mat NANOSAM, Fac Phys Astron & Appl Comp Sci, Ul St Lojasiewicza 11, PL-30348 Krakow, Poland
关键词
TRANSPORT; CONTACT; BAND;
D O I
10.1103/PhysRevB.95.235423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface sensitive electric current measurements are important experimental tools poorly corroborated by theoretical models. We show that the drift-diffusion equations offer a framework for a consistent description of such experiments. The current flow is calculated as a perturbation of an equilibrium solution depicting the space charge layer. We investigate the accumulation and inversion layers in great detail. Relying on numerical findings, we identify the proper length parameter, the relationship of which with the length of the space charge layer is not simple. If the length parameter is large enough, long-ranged modes dominate the Green's function of the current equation, leading to two-dimensional currents. In addition, we demonstrate that the surface behavior of the currents is ruled by only a few parameters. This explains the fact that simplistic conductivity models have proven effective but makes reconstructions of conductance profiles from surface currents rather questionable.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] The quasineutral limit in the quantum drift-diffusion equations
    Juengel, Ansgar
    Violet, Ingrid
    ASYMPTOTIC ANALYSIS, 2007, 53 (03) : 139 - 157
  • [32] The Stability Criterion of a Semiconductor Superlattice in the Drift-Diffusion Approximation
    Zhukovskii, V. Ch
    Prudskikh, N. S.
    Golovatyuk, S. E.
    Krevchik, V. D.
    Semenov, M. B.
    Shorokhov, A. V.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2018, 73 (04) : 398 - 400
  • [33] AN AUGMENTED DRIFT-DIFFUSION MODEL IN A SEMICONDUCTOR-DEVICE
    FRIEDMAN, A
    LIU, WX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (02) : 401 - 412
  • [34] Stability of solitary waves in a semiconductor drift-diffusion model
    Cuesta, C. M.
    Schmeiser, C.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (05) : 1423 - 1438
  • [35] Additive decomposition applied to the semiconductor drift-diffusion model
    Brauer, Elizabeth J.
    Turowski, Marek
    McDonough, James M.
    VLSI Design, 1998, 8 (1-4): : 393 - 399
  • [36] ON THE UNIQUENESS OF THE SOLUTION TO THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR ANALYSIS
    NACHAOUI, A
    NASSIF, NR
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1992, 11 (03) : 377 - 390
  • [37] Discretization scheme for drift-diffusion equations with strong diffusion enhancement
    Koprucki, Thomas
    Gaertner, Klaus
    OPTICAL AND QUANTUM ELECTRONICS, 2013, 45 (07) : 791 - 796
  • [38] Two-dimensional drift-diffusion analysis of magnetic field enhanced THz emission from semiconductor surfaces
    Chau, KJ
    Elezzabi, AY
    OPTICS COMMUNICATIONS, 2004, 242 (1-3) : 295 - 304
  • [39] Analysis of a drift-diffusion model for organic semiconductor devices
    Duy-Hai Doan
    Glitzky, Annegret
    Liero, Matthias
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [40] Nonequilibrium drift-diffusion model for organic semiconductor devices
    Felekidis, Nikolaos
    Melianas, Armantas
    Kemerink, Martijn
    PHYSICAL REVIEW B, 2016, 94 (03)