Uncoordinated tetrazole ligands in metal-organic frameworks for proton-conductivity studies

被引:12
|
作者
Lee, Daeyeon [1 ]
Lee, Sangho [1 ]
Son, Younghu [2 ]
Kim, Jun Yeong [1 ]
Cha, Seungheon [1 ]
Kwak, Dongmin [3 ]
Lee, Jooyeon [1 ]
Kwak, Jaesung [3 ]
Yoon, Minyoung [2 ]
Kim, Min [1 ]
机构
[1] Chungbuk Natl Univ, Dept Chem, Cheongju 28644, South Korea
[2] Kyungpook Natl Univ, Dept Chem, Daegu 41566, South Korea
[3] Korea Res Inst Chem Res, Infect Dis Therapeut Res Ctr, Daejeon 34114, South Korea
基金
新加坡国家研究基金会;
关键词
coordination polymer; functionalization; metal-organic framework; proton conductivity; tetrazole; SULFONIC-ACID GROUPS; COORDINATION POLYMERS; UIO-66;
D O I
10.1002/bkcs.12539
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zr-based metal-organic frameworks (MOFs) were modified with pendant tetrazole ligands for proton conductivity studies. Although tetrazolate ligands coordinated to metal cations have been widely utilized to construct MOFs or porous coordination polymers, to date, the use of uncoordinated tetrazole groups in MOFs has been limited. In this study, a benzene-1,4-dicarboxylic acid with pendant tetrazole groups (BDC-N-4) was synthesized and used to prepare a Zr-based UiO-66 MOF using a mixed-ligand strategy. The tetrazole-functionalized UiO-66-N-4 was compared to MOFs containing other acidic functional groups (hydroxyl, carboxylic acid, and sulfonic acid) with respect to their proton conductivities and acidities (calculated pK(a)). Interestingly, UiO-66-N-4 showed a significant decrease in the activation energy with increase in the amount of added tetrazole groups, suggesting the Grotthuss proton conduction mechanism for uncoordinated tetrazole-containing MOFs.
引用
收藏
页码:912 / 917
页数:6
相关论文
共 50 条
  • [21] Enhancement of Proton Conductivity in Nonporous Metal-Organic Frameworks: The Role of Framework Proton Density and Humidity
    Pili, Simona
    Rought, Peter
    Kolokolov, Daniil I.
    Lin, Longfei
    da Silva, Ivan
    Chen, Yongqiang
    Marsh, Christopher
    Silverwood, Ian P.
    Sakai, Victoria Garcia
    Li, Ming
    Titman, Jeremy J.
    Knight, Lyndsey
    Daemen, Luke L.
    Ramirez-Cuesta, Anibal J.
    Tang, Chiu C.
    Stepanov, Alexander G.
    Yang, Sihai
    Schroder, Martin
    [J]. CHEMISTRY OF MATERIALS, 2018, 30 (21) : 7593 - 7602
  • [23] Metal-Organic Frameworks using pyridyldiyne ligands
    Loots, Leigh
    Bredenkamp, Martin W.
    Barbour, Leonard J.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2007, 63 : S157 - S158
  • [24] Metal-organic frameworks as small molecule ligands
    Dinca, Mircea
    Brozek, Carl
    Cozzolino, Anthony F.
    Wade, Casey R.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [25] Metal-organic frameworks based on pyridyl-tetrazole ligands containing ester or carboxylate pendant arms
    Sheridan, Ursula
    Gallagher, John F.
    Bjerrum, Morten J.
    Fleming, Adrienne
    Kelleher, Fintan
    McGinley, John
    [J]. INORGANICA CHIMICA ACTA, 2014, 421 : 200 - 209
  • [26] Proton conducting phosphonated metal-organic frameworks
    Wong, Norman
    Shimizu, George
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [27] Switched Proton Conduction in Metal-Organic Frameworks
    Xiang, Fahui
    Chen, Shimin
    Yuan, Zhen
    Li, Lu
    Fan, Zhiwen
    Yao, Zizhu
    Liu, Chulong
    Xiang, Shengchang
    Zhang, Zhangjing
    [J]. JACS AU, 2022, 2 (05): : 1043 - 1053
  • [28] Proton-Conductive Metal-Organic Frameworks
    Yamada, Teppei
    Sadakiyo, Masaaki
    Shigematsu, Akihito
    Kitagawa, Hiroshi
    [J]. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2016, 89 (01) : 1 - 10
  • [29] Lanthanide metal-organic frameworks for proton conduction
    Fairley, Melissa
    Qin, Lei
    Zheng, Zhiping
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [30] Metal Centers and Organic Ligands Determine Electrochemistry of Metal-Organic Frameworks
    Li, Caoling
    Shen, Jian
    Wu, Kangbing
    Yang, Nianjun
    [J]. SMALL, 2022, 18 (11)