Quadratic cost flow and the conjugate gradient method

被引:9
|
作者
Sun, J
Yang, XQ
Chen, XD
机构
[1] Natl Univ Singapore, Sch Business, Singapore 117592, Singapore
[2] Natl Univ Singapore, Singapore MIT Alliance, Singapore 117592, Singapore
[3] Natl Univ Singapore, Dept Appl Math, Singapore 117592, Singapore
[4] Shanghai Jiao Tong Univ, Dept Appl Math, Shanghai 200030, Peoples R China
关键词
conjugate gradient methods; network quadratic programming;
D O I
10.1016/j.ejor.2003.04.003
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
By introducing quadratic penalty terms, a convex non-separable quadratic network program can be reduced to an unconstrained optimization problem whose objective function is a piecewise quadratic and continuously differentiable function. A conjugate gradient method is applied to the reduced problem and its convergence is proved. The computation exploits the special network data structures originated from the network simplex method. This algorithmic framework allows direct extension to multicommodity cost flows. Some preliminary computational results are presented. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 114
页数:11
相关论文
共 50 条
  • [21] A multigrid conjugate gradient method
    Pflaum, Christoph
    [J]. APPLIED NUMERICAL MATHEMATICS, 2008, 58 (12) : 1803 - 1817
  • [22] On the truncated conjugate gradient method
    Yuan, Y
    [J]. MATHEMATICAL PROGRAMMING, 2000, 87 (03) : 561 - 573
  • [23] A Modified Conjugate Gradient Method
    Liu, Hao-han
    Liu, Zhi-bin
    [J]. PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2009, 8 : 889 - 892
  • [24] On the truncated conjugate gradient method
    Y. Yuan
    [J]. Mathematical Programming, 2000, 87 : 561 - 573
  • [25] CONJUGATE GRADIENT ALGORITHMS - QUADRATIC TERMINATION WITHOUT LINEAR SEARCHES
    DIXON, LCW
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1975, 15 (01): : 9 - 18
  • [26] Experimental identification of a flow orifice using a neural network and the conjugate gradient method
    [J]. Xu, X.P., 1600, IEEE, Los Alamitos, CA, United States (01):
  • [27] Negative Reactance Impacts Power Flow Convergence Using Conjugate Gradient Method
    Ding, Tao
    Qu, Ming
    Bai, Jiawen
    Li, Fangxing
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (11) : 2527 - 2531
  • [28] Experimental identification of a flow orifice using a neural network and the conjugate gradient method
    Xu, XP
    Burton, RT
    Sargent, CM
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1996, 118 (02): : 272 - 277
  • [29] A combined representer - preconditioned conjugate gradient method for inverse groundwater flow modeling
    Valstar, J. R.
    Verkaik, J.
    [J]. CALIBRATION AND RELIABILITY IN GROUNDWATER MODELING: MANAGING GROUNDWATER AND THE ENVIRONMENT, 2009, : 75 - 77
  • [30] Cost Function Determination for a WIG in Predefined Path and Height Using Conjugate Gradient Method
    Shabani, Raha
    Nalcaci, Gamze
    Leblebicioglu, M. Kemal
    Ermis, Muammer
    [J]. 2020 IEEE 6TH INTERNATIONAL CONFERENCE ON CONTROL SCIENCE AND SYSTEMS ENGINEERING (ICCSSE), 2019, : 178 - 183