Alternative anodes for low temperature lithium-ion batteries

被引:64
|
作者
Collins, Gearoid A. [1 ,2 ]
Geaney, Hugh [1 ,2 ]
Ryan, Kevin M. [1 ,2 ]
机构
[1] Univ Limerick, Dept Chem, Limerick, Ireland
[2] Univ Limerick, Bernal Inst, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
SOLID-ELECTROLYTE INTERPHASE; ELECTRIC VEHICLE-BATTERIES; CHARGE-TRANSFER KINETICS; LIFEPO4 CATHODE MATERIAL; CARBON-COATED LI4TI5O12; ESTER-BASED ELECTROLYTE; HIGH-PERFORMANCE ANODE; ELECTROCHEMICAL PERFORMANCE; PROPYLENE CARBONATE; NEGATIVE-ELECTRODE;
D O I
10.1039/d1ta00998b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-ion batteries (LIBs) have become critical components in the manufacture of electric vehicles (EVs) as they offer the best all-round performance compared to competing battery chemistries. However, LIB performance at low temperature (LT) extremes of EV operation (typically -40 to 0 degrees C) suffers from a reduced output and diminished cycle life. LT cycling increases cell impedance, diminishing Li ion diffusion through the cell, exacerbating electrode polarisation, and hindering interfacial Li+ desolvation. Herein, we present a comprehensive review of (i) the factors that influence LT Li-ion performance, (ii) outline the shortcomings of the current state-of-the-art and (iii) discuss recent findings in the field, focusing on alternative anode materials with particular emphasis on high-capacity, fast charging alternatives to the archetypal carbon (graphite) anode. Different approaches to improve LT LIB performance are outlined in an in-depth analysis of recent improvements from the anode perspective. These include electrolyte-driven enhancements, the resurgence of Li metal batteries, the impact of conductive coatings, elemental doping and nanocomposite formation, substitution of intercalating anodes with high-capacity Li alloying and Li conversion materials, and fast redox pseudocapacitance.
引用
收藏
页码:14172 / 14213
页数:42
相关论文
共 50 条
  • [1] Low-Temperature Behavior of Alloy Anodes for Lithium-Ion Batteries
    Cavallaro, Kelsey A.
    Sandoval, Stephanie Elizabeth
    Yoon, Sun Geun
    Thenuwara, Akila C.
    McDowell, Matthew T.
    [J]. ADVANCED ENERGY MATERIALS, 2022, 12 (43)
  • [2] Characterization of anodes for lithium-ion batteries
    R. M. Humana
    M. G. Ortiz
    J. E. Thomas
    S. G. Real
    M. Sedlarikova
    J. Vondrak
    A. Visintin
    [J]. Journal of Solid State Electrochemistry, 2016, 20 : 1053 - 1058
  • [3] SPINEL ANODES FOR LITHIUM-ION BATTERIES
    FERG, E
    GUMMOW, RJ
    DEKOCK, A
    THACKERAY, MM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) : L147 - L150
  • [4] Characterization of anodes for lithium-ion batteries
    Humana, R. M.
    Ortiz, M. G.
    Thomas, J. E.
    Real, S. G.
    Sedlarikova, M.
    Vondrak, J.
    Visintin, A.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (04) : 1053 - 1058
  • [5] Ball-milling :: an alternative way for the preparation of anodes for lithium-ion batteries
    Guérard, D
    Janot, R
    [J]. SOLID STATE IONICS-2002, 2003, 756 : 307 - 312
  • [6] Effect of temperature on silicon-based anodes for lithium-ion batteries
    Piernas-Munoz, M. J.
    Trask, S. E.
    Dunlop, A. R.
    Lee, E.
    Bloom, I
    [J]. JOURNAL OF POWER SOURCES, 2019, 441
  • [7] A low-temperature electrolyte for lithium and lithium-ion batteries
    Plichta, EJ
    Behl, WK
    [J]. JOURNAL OF POWER SOURCES, 2000, 88 (02) : 192 - 196
  • [8] Low-temperature electrolyte for lithium and lithium-ion batteries
    Plichta, E.J.
    Behl, W.K.
    [J]. 1600, Elsevier Sequoia SA, Switzerland (88):
  • [9] Elemental Foil Anodes for Lithium-Ion Batteries
    Heligman, Brian T.
    Manthiram, Arumugam
    [J]. ACS ENERGY LETTERS, 2021, 6 (08) : 2666 - 2672
  • [10] Overview of carbon anodes for lithium-ion batteries
    Zaghib, K
    Kinoshita, K
    [J]. NEW TRENDS IN INTERCALATION COMPOUNDS FOR ENERGY STORAGE, 2002, 61 : 27 - 38