Gravitational theories coupled to matter as invariant theories under Kac-Moody algebras

被引:0
|
作者
Tabti, Nassiba [1 ]
机构
[1] Univ Libre Bruxelles, Int Solvay Inst, Serv Phys Theor Math & Int, B-1050 Brussels, Belgium
来源
关键词
gravity; unified field theory; space-time symmetries; Kac-Moody algebras;
D O I
10.1002/prop.200610366
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many recent researches indicate that several gravitational D-dimensional theories suitably coupled to some matter fields (including in particular pure gravity in D dimensions, the low energy effective actions of the bosonic string and the bosonic sector of M-theory) would be characterized by infinite dimensional Kac-Moody algebras g(++) and g(+++). The possible existence of these extended symmetries motivates a development of a new description of gravitational theories based on these symmetries. The importance of Kac-Moody algebras and the link between the g(+++)-invariant theories and the uncompactified space-time covariant theories are discussed. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:821 / 826
页数:6
相关论文
共 50 条
  • [21] A generalization of Kac-Moody algebras
    Harada, K
    Miyamoto, M
    Yamada, H
    GROUPS, DIFFERENCE SETS, AND THE MONSTER, 1996, 4 : 377 - 408
  • [22] GENERALIZED KAC-MOODY ALGEBRAS
    BORCHERDS, R
    JOURNAL OF ALGEBRA, 1988, 115 (02) : 501 - 512
  • [23] Dipolarizations in Kac-Moody Algebras
    Wang, Yan
    Meng, Daoji
    ALGEBRA COLLOQUIUM, 2009, 16 (04) : 669 - 676
  • [24] Quantizations of Kac-Moody Algebras
    Kharchenko, Vladislav
    QUANTUM LIE THEORY: A MULTILINEAR APPROACH, 2015, 2150 : 99 - 127
  • [25] QUANTUM KAC-MOODY SYMMETRY IN INTEGRABLE FIELD-THEORIES
    MATHUR, SD
    NUCLEAR PHYSICS B, 1992, 369 (1-2) : 433 - 460
  • [26] On Gradations of Decomposable Kac-Moody Lie Algebras by Kac-Moody Root Systems
    Ben Messaoud, Hechmi
    Layouni, Marwa
    JOURNAL OF LIE THEORY, 2022, 32 (04) : 937 - 971
  • [27] KAC-MOODY CONSTRUCTION OF TODA TYPE FIELD-THEORIES
    ARATYN, H
    FERREIRA, LA
    GOMES, JF
    ZIMERMAN, AH
    PHYSICS LETTERS B, 1991, 254 (3-4) : 372 - 380
  • [28] Toda field theories associated with hyperbolic Kac-Moody algebra - Painleve properties and W algebras
    Gebert, RW
    Mizoguchi, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (31): : 5479 - 5493
  • [30] ON CLASSICAL AND QUANTUM INTEGRABLE FIELD-THEORIES ASSOCIATED TO KAC-MOODY CURRENT-ALGEBRAS
    FREIDEL, L
    MAILLET, JM
    PHYSICS LETTERS B, 1991, 263 (3-4) : 403 - 410