Min-max control using parametric approximate dynamic programming

被引:11
|
作者
Nosair, Hussam [1 ]
Yang, Yu [1 ]
Lee, Jong Min [1 ]
机构
[1] Univ Alberta, Edmonton, AB T6G 2G6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Worst-case formulation; Uncertain linear systems; Robust control; Optimal control; MODEL-PREDICTIVE CONTROL; SYSTEMS;
D O I
10.1016/j.conengprac.2009.09.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study presents a computationally efficient approximate dynamic programming approach to control uncertain linear systems based on a min-max control formulation. The optimal cost-to-go function, which prescribes an optimal control policy, is estimated using piecewise parametric quadratic approximation. The approach requires simulation or operational data only at the bounds of additive disturbances or polyhedral uncertain parameters. This strategy significantly reduces the computational burden associated with dynamic programming and is not limited to a particular form of performance criterion as in previous approaches. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:190 / 197
页数:8
相关论文
共 50 条
  • [1] APPROXIMATE MIN-MAX EQUIVALENT LINEARIZATION
    JONCKHEE.RE
    [J]. JOURNAL OF APPLIED MECHANICS, 1971, 38 (04): : 1070 - &
  • [2] Min-max dynamic response optimization of mechanical systems using approximate augmented Lagrangian
    Kim, MS
    Choi, DH
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1998, 43 (03) : 549 - 564
  • [3] Robust dynamic programming for min-max model predictive control of constrained uncertain systems
    Diehl, M
    Björnberg, J
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (12) : 2253 - 2257
  • [4] Dynamic min-max problems
    Schwiegelshohn, U
    Thiele, L
    [J]. DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 1999, 9 (02): : 111 - 134
  • [5] Dynamic Min-Max Problems
    Uwe Schwiegelshohn
    Lothar Thiele
    [J]. Discrete Event Dynamic Systems, 1999, 9 : 111 - 134
  • [6] Approximate min-max relations on plane graphs
    Ma, Jie
    Yu, Xingxing
    Zang, Wenan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (01) : 127 - 134
  • [7] Max-max, max-min, min-max and min-min knapsack problems with a parametric constraint
    Halman, Nir
    Kovalyov, Mikhail Y.
    Quilliot, Alain
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2023, 21 (02): : 235 - 246
  • [8] Approximate min-max relations on plane graphs
    Jie Ma
    Xingxing Yu
    Wenan Zang
    [J]. Journal of Combinatorial Optimization, 2013, 26 : 127 - 134
  • [9] MIN-MAX QUADRATIC COST CONTROL OF SYSTEMS DESCRIBED BY APPROXIMATE MODELS
    MENGA, G
    MILANESE, M
    NEGRO, AL
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (05) : 651 - 659
  • [10] Min-Max Differential Dynamic Programming: Continuous and Discrete Time Formulations
    Sun, Wei
    Pan, Yunpeng
    Lim, Jaein
    Theodorou, Evangelos A.
    Tsiotras, Panagiotis
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2018, 41 (12) : 2568 - 2580