Dynamic Min-Max Problems

被引:0
|
作者
Uwe Schwiegelshohn
Lothar Thiele
机构
[1] University Dortmund,Computer Engineering Institute
[2] Swiss Federal Institute of Technology (ETH),Computer Engineering and Networks Laboratory
来源
关键词
min-max algebra; graph theory; periodic graphs;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a method to check the solvability of a set of linear equations in the (max, min, +) algebra is described. Then, extensions to dynamic (or periodic) systems in the (max, min, +) algebra are provided. Further, some results regarding the uniqueness of solutions in both cases are given. Finally, we address a more general quasi periodic problem and provide an algorithm for its solution.
引用
收藏
页码:111 / 134
页数:23
相关论文
共 50 条
  • [1] Dynamic min-max problems
    Schwiegelshohn, U
    Thiele, L
    [J]. DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 1999, 9 (02): : 111 - 134
  • [2] Complexity of the min-max and min-max regret assignment problems
    Aissi, H
    Bazgan, C
    Vanderpooten, D
    [J]. OPERATIONS RESEARCH LETTERS, 2005, 33 (06) : 634 - 640
  • [3] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [4] Pseudo-polynomial algorithms for min-max and min-max regret problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. Operations Research and Its Applications, 2005, 5 : 171 - 178
  • [5] Approximation and resolution of min-max and min-max regret versions of combinatorial optimization problems
    Aissi H.
    [J]. 4OR, 2006, 4 (4) : 347 - 350
  • [6] Approximation of min-max and min-max regret versions of some combinatorial optimization problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 179 (02) : 281 - 290
  • [7] Min-Max quickest path problems
    Ruzika, Stefan
    Thiemann, Markus
    [J]. NETWORKS, 2012, 60 (04) : 253 - 258
  • [8] Parallel Approximation of Min-Max Problems
    Gus Gutoski
    Xiaodi Wu
    [J]. computational complexity, 2013, 22 : 385 - 428
  • [9] Min-max controllable risk problems
    Gurevsky, Evgeny
    Kovalev, Sergey
    Kovalyov, Mikhail Y.
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2021, 19 (01): : 93 - 101
  • [10] Min-max controllable risk problems
    Evgeny Gurevsky
    Sergey Kovalev
    Mikhail Y. Kovalyov
    [J]. 4OR, 2021, 19 : 93 - 101