On the exciton blocking layer at the interface organic/cathode in planar multiheterojunction organic solar cells

被引:5
|
作者
Toumi, A. Lakhdar [1 ]
Khelil, A. [1 ]
Tobel, K. [2 ]
Makha, M. [3 ]
Hernandez, L. A. [4 ]
Mouchaal, Y. [1 ]
Cattin, L. [5 ]
del Valle, M. A. [4 ]
Diaz, F. R. [4 ]
Bernede, J. C. [3 ]
机构
[1] Univ Oran, LPCM2E, Oran 31000, Algeria
[2] Univ Oran, LSO, Oran 31000, Algeria
[3] Univ Nantes, MOLTECH Anjou, CNRS, UMR 6200, F-44322 Nantes, France
[4] Pontificia Univ Catolica Chile, Fac Quim, Santiago 7820436, Chile
[5] Univ Nantes, CNRS, IMN, UMR 6502, F-44322 Nantes, France
关键词
Organic solar cells; Exciton blocking layer; Interfaces; Physical vapour deposition; PHOTOVOLTAIC CELLS; MECHANISM;
D O I
10.1016/j.sse.2014.11.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A successful approach to improve organic solar cell (OSC) performance is the introduction of a thin layer called exciton blocking layer (EBL) at the interface organic material/cathode. It is shown that, the EBL allows improving significantly the solar cells performances whatever the molecule used, either the well known bathocuproine (BCP) or the new molecule Z, 5[4-Me-3-N (2-OMe Phenyl)Delta(4) thiazolidene], 2-thioxo-3-N(2-OEthylphenyl)thizolidine-4-one (ROETOM). The optimum thickness of the EBL in the case of ROETOM is 6 nm, while it is 9 nm in the case of BCP. These different behaviours are justified by the very high homogeneity of the ROETOM layer. Homogeneity which prevents easily metal atom diffusion when it is introduced in OSC and therefore 6 nm are sufficient to prevent metal atom diffusion into the acceptor. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Uncovering the role of cathode buffer layer in organic solar cells
    Qi, Boyuan
    Zhang, Zhi-Guo
    Wang, Jizheng
    SCIENTIFIC REPORTS, 2015, 5
  • [23] Effect of a cathode buffer layer on the stability of organic solar cells
    Wang, Danbei
    Zeng, Wenjin
    Chen, Shilin
    Su, Xiaodan
    Wang, Jin
    Zhang, Hongmei
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (08)
  • [24] Effects of exciton blocking layer and cathode electrode work function on the performance of polymer solar cells
    Nasiri, M.
    Abbasi, F.
    Moghaddam, M. Khaleghi
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 40 : 218 - 223
  • [25] Reducing exciton-polaron annihilation in organic planar heterojunction solar cells
    Verreet, Bregt
    Bhoolokam, Ajay
    Brigeman, Alyssa
    Dhanker, Rijul
    Cheyns, David
    Heremans, Paul
    Stesmans, Andre
    Giebink, Noel C.
    Rand, Barry P.
    PHYSICAL REVIEW B, 2014, 90 (11):
  • [26] Cathode Interface Investigation In Polymer/Fullerene Based Organic Solar Cells
    Liao, Ying-Jie
    Yuan, Da-Xing
    Xu, Mei-Feng
    Jin, Zhi-Ming
    Wang, Zhao-Kui
    Liao, Liao-Sheng
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2014, 27 (05) : 583 - 587
  • [27] Contrary interfacial exciton dissociation at metal/organic interface in regular and reverse configuration organic solar cells
    Wu, Bo
    Wu, Zhenghui
    Tam, Hoi Lam
    Zhu, Furong
    APPLIED PHYSICS LETTERS, 2014, 105 (10)
  • [28] Role of the Interface and Extraction Layer Energetics in Organic Solar Cells
    Hussain, Kashif
    Kaiser, Waldemar
    Gagliardi, Alessio
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (10): : 5447 - 5457
  • [29] Elucidating the role of the heterojunction interface in the exciton harvest and charge collection of organic solar cells through a planar heterojunction structure
    Liang, Quanbin
    Xie, Yuan
    Wu, Hongbin
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (02) : 598 - 606
  • [30] A New Exciton Blocking Material for Organic Solar Cell Applications
    Kim, Gyeong Woo
    Lampande, Raju
    Kwon, Jang Hyuk
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2013, 585 (01) : 138 - 144