Am activation function adapting training algorithm for sigmoidal feedforward networks

被引:50
|
作者
Chandra, P [1 ]
Singh, Y [1 ]
机构
[1] GGS Indraprastha Univ, Sch Informat Technol, Delhi 110006, India
关键词
feedforward artificial neural networks; sigmoidal activation; squashing function; self-adaptation;
D O I
10.1016/j.neucom.2004.04.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The universal approximation results for sigmoidal feedforward artificial neural networks do not recommend a preferred activation function. In this paper a new activation function adapting algorithm is proposed for sigmoidal feedforward neural network training. The algorithm is compared against the backpropagation algorithm on four function approximation tasks. The results demonstrate that the proposed algorithm can be an order of magnitude faster than the backpropagation algorithm. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:429 / 437
页数:9
相关论文
共 50 条