Riemannian geometry and automatic differentiation for optimization problems of quantum physics and quantum technologies

被引:18
|
作者
Luchnikov, Ilia A. [1 ,2 ,3 ]
Krechetov, Mikhail E. [2 ]
Filippov, Sergey N. [1 ,4 ,5 ]
机构
[1] Moscow Inst Phys & Technol, Inst Skii Pereulok 9, Dolgoprudnyi 141700, Moscow Region, Russia
[2] Skolkovo Inst Sci & Technol, Skolkovo 121205, Moscow Region, Russia
[3] Russian Quantum Ctr, Moscow 143025, Russia
[4] Russian Acad Sci, Steklov Math Inst, Gubkina St 8, Moscow 119991, Russia
[5] Russian Acad Sci, Valiev Inst Phys & Technol, Nakhimovskii Prospect 34, Moscow 117218, Russia
来源
NEW JOURNAL OF PHYSICS | 2021年 / 23卷 / 07期
基金
俄罗斯科学基金会;
关键词
Riemannian optimization; Stiefel manifold; quantum state engineering; multiscale entanglement-renormalization ansatz; quantum tomography; TENSOR NETWORKS; ALGORITHMS; SYSTEMS; STATES;
D O I
10.1088/1367-2630/ac0b02
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optimization with constraints is a typical problem in quantum physics and quantum information science that becomes especially challenging for high-dimensional systems and complex architectures like tensor networks. Here we use ideas of Riemannian geometry to perform optimization on the manifolds of unitary and isometric matrices as well as the cone of positive-definite matrices. Combining this approach with the up-to-date computational methods of automatic differentiation, we demonstrate the efficacy of the Riemannian optimization in the study of the low-energy spectrum and eigenstates of multipartite Hamiltonians, variational search of a tensor network in the form of the multiscale entanglement-renormalization ansatz, preparation of arbitrary states (including highly entangled ones) in the circuit implementation of quantum computation, decomposition of quantum gates, and tomography of quantum states. Universality of the developed approach together with the provided open source software enable one to apply the Riemannian optimization to complex quantum architectures well beyond the listed problems, for instance, to the optimal control of noisy quantum systems.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] QGOpt: Riemannian optimization for quantum technologies
    Luchnikov, Ilia A.
    Ryzhov, Alexander
    Filippov, Sergey N.
    Ouerdane, Henni
    [J]. SCIPOST PHYSICS, 2021, 10 (03):
  • [3] Riemannian Geometry of Quantum Computation
    Brandt, Howard E.
    [J]. QUANTUM INFORMATION SCIENCE AND ITS CONTRIBUTIONS TO MATHEMATICS, 2010, 68 : 61 - 101
  • [4] Riemannian geometry on quantum spaces
    Ho, PM
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (05): : 923 - 943
  • [5] Riemannian geometry of quantum computation
    Brandt, Howard E.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E474 - E486
  • [6] Tools in the Riemannian geometry of quantum computation
    Brandt, Howard E.
    [J]. QUANTUM INFORMATION PROCESSING, 2012, 11 (03) : 787 - 839
  • [7] ASPECTS OF THE RIEMANNIAN GEOMETRY OF QUANTUM COMPUTATION
    Brandt, Howard E.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (27-28):
  • [8] Geometry of quantum Riemannian Hamiltonian evolution
    Elgressy, Gil
    Horwitz, Lawrence
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)
  • [9] Tools in the Riemannian geometry of quantum computation
    Howard E. Brandt
    [J]. Quantum Information Processing, 2012, 11 : 787 - 839
  • [10] Quantum and braided group Riemannian geometry
    Majid, S
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1999, 30 (02) : 113 - 146