QGOpt: Riemannian optimization for quantum technologies

被引:13
|
作者
Luchnikov, Ilia A. [1 ,2 ,3 ]
Ryzhov, Alexander [2 ]
Filippov, Sergey N. [1 ,4 ,5 ]
Ouerdane, Henni [2 ]
机构
[1] Moscow Inst Phys & Technol, Inst Skii Pereulok 9, Dolgoprudnyi 141700, Moscow Region, Russia
[2] Skolkovo Inst Sci & Technol, Ctr Energy Sci & Technol, Moscow 121205, Russia
[3] Russian Quantum Ctr, Moscow 143025, Russia
[4] Russian Acad Sci, Steklov Math Inst, Gubkina St 8, Moscow 119991, Russia
[5] Russian Acad Sci, Valiev Inst Phys & Technol, Nakhimovskii Prospect 34, Moscow 117218, Russia
来源
SCIPOST PHYSICS | 2021年 / 10卷 / 03期
关键词
MATRIX PRODUCT STATES; RENORMALIZATION-GROUP; GEOMETRY; ALGORITHMS;
D O I
10.21468/SciPostPhys.10.3.079
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many theoretical problems in quantum technology can be formulated and addressed as constrained optimization problems. The most common quantum mechanical constraints such as, e.g., orthogonality of isometric and unitary matrices, CPTP property of quantum channels, and conditions on density matrices, can be seen as quotient or embedded Riemannian manifolds. This allows to use Riemannian optimization techniques for solving quantum-mechanical constrained optimization problems. In the present work, we introduce QGOpt, the library for constrained optimization in quantum technology. QGOpt relies on the underlying Riemannian structure of quantum-mechanical constraints and permits application of standard gradient based optimization methods while preserving quantum mechanical constraints. Moreover, QGOpt is written on top of TensorFlow, which enables automatic differentiation to calculate necessary gradients for optimization. We show two application examples: quantum gate decomposition and quantum tomography.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Riemannian geometry and automatic differentiation for optimization problems of quantum physics and quantum technologies
    Luchnikov, Ilia A.
    Krechetov, Mikhail E.
    Filippov, Sergey N.
    [J]. NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [2] Riemannian quantum circuit optimization for Hamiltonian simulation
    Kotil, Ayse
    Banerjee, Rahul
    Huang, Qunsheng
    Mendl, Christian B.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (13)
  • [3] Riemannian optimization of photonic quantum circuits in phase and Fock space
    Yao, Yuan
    Miatto, Filippo
    Quesada, Nicolas
    [J]. SCIPOST PHYSICS, 2024, 17 (03):
  • [4] A Quantum-Behaved Particle Swarm Optimization Algorithm on Riemannian Manifolds
    Halimu, Yeerjiang
    Zhou, Chao
    You, Qi
    Sun, Jun
    [J]. MATHEMATICS, 2022, 10 (22)
  • [5] Riemannian quantum circuit
    Ramos, R. V.
    Mendes, F. V.
    [J]. PHYSICS LETTERS A, 2014, 378 (20) : 1346 - 1349
  • [6] Riemannian optimization and multidisciplinary design optimization
    Craig Bakker
    Geoffrey T. Parks
    [J]. Optimization and Engineering, 2016, 17 : 663 - 693
  • [7] Riemannian optimization and multidisciplinary design optimization
    Bakker, Craig
    Parks, Geoffrey T.
    [J]. OPTIMIZATION AND ENGINEERING, 2016, 17 (04) : 663 - 693
  • [8] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [9] Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
    Zhang, Hongyi
    Reddi, Sashank J.
    Sra, Suvrit
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29