The Improved-Sparsity Adaptive Matching Pursuit Algorithm for Pulse-Position-Modulation ADC Architecture

被引:0
|
作者
Liu, Mengyue [1 ]
Peng, Huiyang [1 ]
Chen, Lei [1 ]
Liu, Yu [1 ]
Wang, Yumei [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Minist Educ PRC, Key Lab Universal Wireless Commun, Beijing 100876, Peoples R China
基金
美国国家科学基金会;
关键词
compressed sensing; random pulse-positionmodulation (PPM) analog-to-digital converter (ADC); period random sampling reconstruction (PRSreco) algorithm; sparsity adaptive matching pursuit (SAMP) algorithm; improved-SAMP algorithm; ANALOG;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The emergency of compressed sensing breaks the bottleneck of traditional Nyquist theory and results in various sub-Nyquist sampling architectures. As a representative, the random pulse-position-modulation analog-to-digital converter (PPM ADC) combines compressed sensing techniques with time-domain signal processing to effectively leverage the power efficiency. For this frame, period random sampling reconstruction (PRSreco) algorithm is originally used to recover signal from sub-Nyquist samples. While PRSreco is restricted with the necessity of signal's prior sparsity information and has an unsatisfactory performance in low sub-sampling ratio. So we adopt sparsity adaptive matching pursuit (SAMP) algorithm to PPM ADC, which releases the condition of signals sparsity. What's more, we propose improved-SAMP by adding a denoising module to SAMP. The denoising module is based on the first significant jump point theory and eliminates the fake detected support set. Through numbers of simulations and discussions, we demonstrate that improved-SAMP augments the output SNR over whole sub-sampling ratio compared with PRSreco. Under noisy condition, improved-SAMP obtains the largest output SNR and corresponds to the least compression ratio satisfying a successful recovery.
引用
收藏
页数:6
相关论文
共 46 条
  • [41] Improved adaptive forward-backward matching pursuit algorithm to compressed sensing signal recovery
    Meng, Zong
    Pan, Zuozhou
    Shi, Ying
    Chen, Zijun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (23) : 33969 - 33984
  • [42] Improved adaptive forward-backward matching pursuit algorithm to compressed sensing signal recovery
    Zong Meng
    Zuozhou Pan
    Ying Shi
    Zijun Chen
    Multimedia Tools and Applications, 2019, 78 : 33969 - 33984
  • [43] Transient Feature Extraction by the Improved Orthogonal Matching Pursuit and K-SVD Algorithm With Adaptive Transient Dictionary
    Qin, Yi
    Zou, Jingqiang
    Tang, Baoping
    Wang, Yi
    Chen, Haizhou
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 215 - 227
  • [44] An improved reconstruction method based on auto-adjustable step size sparsity adaptive matching pursuit and adaptive modular dictionary update for acoustic emission signals of rails
    Song, Shuzhi
    Zhang, Xin
    Hao, Qiushi
    Wang, Yan
    Feng, Naizhang
    Shen, Yi
    MEASUREMENT, 2022, 189
  • [45] Estimation of time-varying underwater acoustic channels via an improved sparse adaptive orthogonal matching pursuit algorithm
    Hu, Yunfeng
    Tao, Jun
    Tong, Feng
    APPLIED ACOUSTICS, 2025, 233
  • [46] Mixed L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{1}$$\end{document} norm and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{2}$$\end{document} norm regularized sparsity adaptive matching pursuit algorithm
    Nian Cai
    Qian Ye
    Jing Wang
    Guandong Cen
    Junchi Liu
    Han Wang
    Bingo Wing-Kuen
    Signal, Image and Video Processing, 2018, 12 (1) : 133 - 140