Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5 years: recent strategies for design, synthesis and performance optimization

被引:24
|
作者
Qin, Yuan [1 ,2 ]
Ou, Zihao [1 ,2 ]
Xu, Chuanlan [2 ,3 ]
Zhang, Zubang [2 ]
Yi, Junjie [2 ]
Jiang, Ying [2 ]
Wu, Jinyan [2 ]
Guo, Chaozhong [1 ,2 ]
Si, Yujun [4 ]
Zhao, Tiantao [1 ]
机构
[1] Chongqing Univ Technol, Coll Chem & Chem Engn, Chongqing 400054, Peoples R China
[2] Chongqing Univ Arts & Sci, Chongqing Key Lab Mat Surface & Interface Sci, Chongqing 402160, Peoples R China
[3] Chongqing Univ, Coll Chem & Chem Engn, Chongqing 401331, Peoples R China
[4] Sichuan Univ Sci & Engn, Coll Chem & Mat Sci, Zigong 643000, Peoples R China
来源
NANOSCALE RESEARCH LETTERS | 2021年 / 16卷 / 01期
基金
中国国家自然科学基金;
关键词
Flexible zinc-air batteries; Carbon-based electrocatalysts; Electrocatalytic mechanism; Air cathode; OXYGEN REDUCTION REACTION; IN-SITU; BIFUNCTIONAL ELECTROCATALYSTS; POROUS CARBONS; GRAPHENE; NITROGEN; EFFICIENT; NANOPARTICLES; ELECTRODES; DEFECT;
D O I
10.1186/s11671-021-03548-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The increasing popularity of wearable electronic devices has led to the rapid development of flexible energy conversion systems. Flexible rechargeable zinc-air batteries (ZABs) with high theoretical energy densities demonstrate significant potential as next-generation flexible energy devices that can be applied in wearable electronic products. The design of highly efficient and air-stable cathodes that can electrochemically catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable but challenging. Flexible carbon-based catalysts for ORR/OER catalysis can be broadly categorized into two types: (i) self-supporting catalysts based on the in situ modification of flexible substrates; (ii) non-self-supporting catalysts based on surface coatings of flexible substrates. Methods used to optimize the catalytic performance include doping with atoms and regulation of the electronic structure and coordination environment. This review summarizes the most recently proposed strategies for the synthesis of designer carbon-based electrocatalysts and the optimization of their electrocatalytic performances in air electrodes. And we significantly focus on the analysis of the inherent active sites and their electrocatalytic mechanisms when applied as flexible ZABs catalysts. The findings of this review can assist in the design of more valuable carbon-based air electrodes and their corresponding flexible ZABs for application in wearable electronic devices.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives
    Chen, Dongfang
    Pan, Lyuming
    Pei, Pucheng
    Song, Xin
    Ren, Peng
    Zhang, Lu
    NANO RESEARCH, 2022, 15 (06) : 5038 - 5063
  • [12] Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives
    Dongfang Chen
    Lyuming Pan
    Pucheng Pei
    Xin Song
    Peng Ren
    Lu Zhang
    Nano Research, 2022, 15 : 5038 - 5063
  • [13] Recent progress in porous carbon-supported materials as efficient oxygen electrocatalysts for zinc-air batteries
    Cai, Shichang
    An, Yu
    Feng, Yagang
    Duan, Lei
    Zhang, Hanlu
    Zhang, Meng
    Wu, Jiabin
    Tang, Haolin
    SCIENCE CHINA-MATERIALS, 2023, 66 (09) : 3381 - 3400
  • [14] Carbon-based electrocatalysts for rechargeable Zn-air batteries: design concepts, recent progress and future perspectives
    Zou, Xiaohong
    Tang, Mingcong
    Lu, Qian
    Wang, Ying
    Shao, Zongping
    An, Liang
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (02) : 386 - 424
  • [15] Effect of carbon properties on the electrochemical performance of carbon-based air electrodes for rechargeable zinc-air batteries
    Min, Yu-Jeong
    Oh, Su-Jung
    Kim, Min-Soo
    Choi, Jeong-Hee
    Eom, Seungwook
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2018, 48 (04) : 405 - 413
  • [16] Polymer electrolytes for flexible zinc-air batteries: Recent progress and future directions
    Wu, Jing
    Wu, Wen-Ya
    Wang, Suxi
    Kai, Dan
    Ye, Enyi
    Thitsartarn, Warintorn
    Beng, Janet
    Tan, Hoon
    Xu, Jianwei
    Yan, Qingyu
    Zhu, Qiang
    Loh, Xian Jun
    NANO RESEARCH, 2024, 17 (07) : 6058 - 6079
  • [17] Doping engineering: modulating the intrinsic activity of bifunctional carbon-based oxygen electrocatalysts for high-performance zinc-air batteries
    Zhang, Huiling
    Guang, Huanzhu
    Li, Ruopeng
    Lu, Xiangyu
    Xu, Hao
    Wang, Dan
    Xiao, Lihui
    Zhang, Jinqiu
    An, Maozhong
    Yang, Peixia
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (41) : 21797 - 21815
  • [18] Carbon-based composites for rechargeable zinc-air batteries: A mini review
    Liu, Yuzhen
    Lu, Junjie
    Xu, Shaofeng
    Zhang, Wei
    Gao, De
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [19] Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications
    Wang, Shuyun
    Chen, Shengmei
    Ma, Longtao
    Zapien, Juan Antonio
    MATERIALS TODAY ENERGY, 2021, 20
  • [20] Recent Advances in Catalyst Design and Performance Optimization of Nanostructured Cathode Materials in Zinc-Air Batteries
    Shi, Haiyang
    Gao, Sanshuang
    Liu, Xijun
    Wang, Yin
    Zhou, Shuxing
    Liu, Qian
    Zhang, Lei
    Hu, Guangzhi
    SMALL, 2024, 20 (25)