Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach

被引:43
|
作者
Lezcano-Valverde, Jose M. [1 ,2 ]
Salazar, Fernando [3 ]
Leon, Leticia [1 ,2 ]
Toledano, Esther [1 ,2 ]
Jover, Juan A. [1 ,2 ]
Fernandez-Gutierrez, Benjamin [1 ,2 ]
Soudah, Eduardo [3 ]
Gonzalez-Alvaro, Isidoro [4 ,5 ]
Abasolo, Lydia [1 ,2 ]
Rodriguez-Rodriguez, Luis [1 ,2 ]
机构
[1] Hosp Clin San Carlos, Dept Rheumatol, Madrid, Spain
[2] IdISSC, Madrid, Spain
[3] Int Ctr Numer Methods Engn CIMNE, Madrid, Spain
[4] Hosp Clin Univ La Princesa, Rheumatol Dept, Madrid, Spain
[5] IIS IP, Madrid, Spain
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
QUALITY-OF-LIFE; EXTERNAL VALIDATION; EXCESS MORTALITY; PANCREATIC ADENOCARCINOMA; CARDIOVASCULAR-DISEASE; PROGNOSTIC MODEL; REGRESSION TREES; FOLLOW-UP; SURVIVAL; CLASSIFICATION;
D O I
10.1038/s41598-017-10558-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We developed and independently validated a rheumatoid arthritis (RA) mortality prediction model using the machine learning method Random Survival Forests (RSF). Two independent cohorts from Madrid (Spain) were used: the Hospital Clinico San Carlos RA Cohort (HCSC-RAC; training; 1,461 patients), and the Hospital Universitario de La Princesa Early Arthritis Register Longitudinal study (PEARL; validation; 280 patients). Demographic and clinical-related variables collected during the first two years after disease diagnosis were used. 148 and 21 patients from HCSC-RAC and PEARL died during a median follow-up time of 4.3 and 5.0 years, respectively. Age at diagnosis, median erythrocyte sedimentation rate, and number of hospital admissions showed the higher predictive capacity. Prediction errors in the training and validation cohorts were 0.187 and 0.233, respectively. A survival tree identified five mortality risk groups using the predicted ensemble mortality. After 1 and 7 years of follow-up, time-dependent specificity and sensitivity in the validation cohort were 0.79-0.80 and 0.43-0.48, respectively, using the cut-off value dividing the two lower risk categories. Calibration curves showed overestimation of the mortality risk in the validation cohort. In conclusion, we were able to develop a clinical prediction model for RA mortality using RSF, providing evidence for further work on external validation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach
    José M. Lezcano-Valverde
    Fernando Salazar
    Leticia León
    Esther Toledano
    Juan A. Jover
    Benjamín Fernandez-Gutierrez
    Eduardo Soudah
    Isidoro González-Álvaro
    Lydia Abasolo
    Luis Rodriguez-Rodriguez
    [J]. Scientific Reports, 7
  • [2] Machine Learning in Rheumatology: Development and Validation of a Predictive Model for Rheumatoid Arthritis Mortality Using Random Survival Forests
    Rodriguez-Rodriguez, Luis
    Lezcano-Valverde, Jose M.
    Salazar, Fernando
    Leon, Leticia
    Toledano, Esther
    Jover, Juan A. Jover
    Soudah, Eduardo
    Fernandez-Gutierrez, Benjamin
    Gonzalez-Alvaro, Isidoro
    Alcazar, Lydia A.
    [J]. ARTHRITIS & RHEUMATOLOGY, 2017, 69
  • [3] DEVELOPMENT OF A PREDICTIVE MODEL FOR RHEUMATOID ARTHRITIS MORTALITY USING RANDOM SURVIVAL FOREST
    Rodriguez-Rodriguez, L.
    Lezcano, J. M.
    Soudah, E.
    Jover, J. A.
    Gonzalez-Alvarez, I.
    Salazar, F.
    Abasolo, L.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2017, 76 : 520 - 520
  • [4] Development and Validation of a Predictive Model for Coronary Artery Disease Using Machine Learning
    Wang, Chen
    Zhao, Yue
    Jin, Bingyu
    Gan, Xuedong
    Liang, Bin
    Xiang, Yang
    Zhang, Xiaokang
    Lu, Zhibing
    Zheng, Fang
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [5] Development and validation of a predictive model assessing the risk of sarcopenia in rheumatoid arthritis patients
    Qu, Yuan
    Zhang, Lili
    Liu, Yuan
    Fu, Yang
    Wang, Mengjie
    Liu, Chuanguo
    Wang, Xinyu
    Wan, Yakun
    Xu, Bing
    Zhang, Qian
    Li, Yancun
    Jiang, Ping
    [J]. FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [6] A machine learning predictive model for recurrence of resected distal cholangiocarcinoma: Development and validation of predictive model using artificial intelligence
    Perez, Marc
    Hansen, Carsten Palnaes
    Burdio, Fernando
    Sanchez-Velazquez, Patricia
    Giuliani, Antonio
    Lancellotti, Francesco
    de Liguori-Carino, Nicola
    Malleo, Giuseppe
    Marchegiani, Giovanni
    Podda, Mauro
    Pisanu, Adolfo
    De Luca, Giuseppe Massimiliano
    Anselmo, Alessandro
    Siragusa, Leandro
    Burgdorf, Stefan Kobbelgaard
    Tschuor, Christoph
    Cacciaguerra, Andrea Benedetti
    Koh, Ye Xin
    Masuda, Yoshio
    Xuan, Mark Yeo Hao
    Seeger, Nico
    Breitenstein, Stefan
    Grochola, Filip Lukasz
    Di Martino, Marcello
    Secanella, Luis
    Busquets, Juli
    Dorcaratto, Dimitri
    Mora-Oliver, Isabel
    Ingallinella, Sara
    Salvia, Roberto
    Abu Hilal, Mohammad
    Aldrighetti, Luca
    Ielpo, Benedetto
    [J]. EJSO, 2024, 50 (07):
  • [7] VALIDATION OF A PREDICTIVE MODEL FOR MORTALITY IN ISCHEMIC STROKE USING MACHINE LEARNING IN A POPULATION-BASED SETTING
    Vivanco-Hidalgo, R. M.
    Boher, M.
    Abilleira, S.
    Ribera, A.
    Rudilosso, S.
    Sero, L.
    Purroy, F.
    Mas, N.
    Cardona, P.
    Molina, C.
    Krupinski, J.
    Serena Leal, J.
    Zaragoza, J.
    Marti Fabregas, J.
    Gomez-Choco, M.
    Canovas, D.
    Gomis, M.
    Rodriguez Campello, A.
    Martinez, L.
    Perez De La Ossa, N.
    Roman, R.
    [J]. INTERNATIONAL JOURNAL OF STROKE, 2020, 15 (1_SUPPL) : 446 - 446
  • [8] Development and Validation of Prediction Model for Neonatal Intensive Care Unit (NICU) Admission Using Machine Learning and Multivariate Statistical Approach
    Panda, Nihar Ranjan
    Mahanta, Kamal Lochan
    Pati, Jitendra Kumar
    Pati, Tapasi
    [J]. JOURNAL OF OBSTETRICS AND GYNECOLOGY OF INDIA, 2024,
  • [9] Detection of Rheumatoid Arthritis Using Machine Learning
    Singh, Utkarsh Vikram
    Gupta, Eva
    Choudhury, Tanupriya
    [J]. PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE' 2019), 2019, : 25 - 29
  • [10] Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study
    Wang, Yiping
    Gao, Zhihong
    Zhang, Yang
    Lu, Zhongqiu
    Sun, Fangyuan
    [J]. INTERNAL AND EMERGENCY MEDICINE, 2024,