Development and Validation of a Predictive Model for Coronary Artery Disease Using Machine Learning

被引:10
|
作者
Wang, Chen [1 ]
Zhao, Yue [1 ]
Jin, Bingyu [1 ]
Gan, Xuedong [2 ]
Liang, Bin [1 ]
Xiang, Yang [1 ]
Zhang, Xiaokang [1 ]
Lu, Zhibing [2 ]
Zheng, Fang [1 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Ctr Gene Diag, Dept Lab Med, Wuhan, Peoples R China
[2] Wuhan Univ, Zhongnan Hosp, Dept Cardiol, Wuhan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
coronary artery disease; prediction model; machine learning; random forest; primary prevention; HEART-DISEASE; RISK-FACTORS; CARDIOVASCULAR-DISEASE; CHOLESTEROL; TRIGLYCERIDES; MECHANISMS; HDL; APOLIPOPROTEINS; ATHEROSCLEROSIS; HYPERTENSION;
D O I
10.3389/fcvm.2021.614204
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Early identification of coronary artery disease (CAD) can prevent the progress of CAD and effectually lower the mortality rate, so we intended to construct and validate a machine learning model to predict the risk of CAD based on conventional risk factors and lab test data. There were 3,112 CAD patients and 3,182 controls enrolled from three centers in China. We compared the baseline and clinical characteristics between two groups. Then, Random Forest algorithm was used to construct a model to predict CAD and the model was assessed by receiver operating characteristic (ROC) curve. In the development cohort, the Random Forest model showed a good AUC 0.948 (95%CI: 0.941-0.954) to identify CAD patients from controls, with a sensitivity of 90%, a specificity of 85.4%, a positive predictive value of 0.863 and a negative predictive value of 0.894. Validation of the model also yielded a favorable discriminatory ability with the AUC, sensitivity, specificity, positive predictive value, and negative predictive value of 0.944 (95%CI: 0.934-0.955), 89.5%, 85.8%, 0.868, and 0.886 in the validation cohort 1, respectively, and 0.940 (95%CI: 0.922-0.960), 79.5%, 94.3%, 0.932, and 0.823 in the validation cohort 2, respectively. An easy-to-use tool that combined 15 indexes to assess the CAD risk was constructed and validated using Random Forest algorithm, which showed favorable predictive capability (). Our model is extremely valuable for clinical practice, which will be helpful for the management and primary prevention of CAD patients.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Machine Learning Predictive Models for Coronary Artery Disease
    Muhammad L.J.
    Al-Shourbaji I.
    Haruna A.A.
    Mohammed I.A.
    Ahmad A.
    Jibrin M.B.
    [J]. SN Computer Science, 2021, 2 (5)
  • [2] Validation of a predictive model for coronary artery disease in patients with diabetes
    Xu, Junhong
    Zhao, Qiongrui
    Li, Juan
    Yuan, Youhua
    Cao, Xingguo
    Zhang, Xueyan
    Fang, Jia
    Yan, Wenjuan
    Wang, Baoya
    Li, Yi
    Chu, Yingjie
    [J]. JOURNAL OF CARDIOVASCULAR MEDICINE, 2023, 24 (01) : 36 - 43
  • [3] Construction and Validation of a Predictive Model for Coronary Artery Disease Using Extreme Gradient Boosting
    Zhang, Zheng
    Shao, Binbin
    Liu, Hongzhou
    Huang, Ben
    Gao, Xuechen
    Qiu, Jun
    Wang, Chen
    [J]. JOURNAL OF INFLAMMATION RESEARCH, 2024, 17 : 4163 - 4174
  • [4] Prediction of Coronary Artery Disease Using Machine Learning
    Chang, Chin-Chuan
    Chen, Chien-Hua
    Hsieh, Jer-Guang
    Jeng, Jyh-Horng
    [J]. Proceedings of the 2022 IEEE 4th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability, ECBIOS 2022, 2022, : 225 - 227
  • [5] A machine learning predictive model for recurrence of resected distal cholangiocarcinoma: Development and validation of predictive model using artificial intelligence
    Perez, Marc
    Hansen, Carsten Palnaes
    Burdio, Fernando
    Sanchez-Velazquez, Patricia
    Giuliani, Antonio
    Lancellotti, Francesco
    de Liguori-Carino, Nicola
    Malleo, Giuseppe
    Marchegiani, Giovanni
    Podda, Mauro
    Pisanu, Adolfo
    De Luca, Giuseppe Massimiliano
    Anselmo, Alessandro
    Siragusa, Leandro
    Burgdorf, Stefan Kobbelgaard
    Tschuor, Christoph
    Cacciaguerra, Andrea Benedetti
    Koh, Ye Xin
    Masuda, Yoshio
    Xuan, Mark Yeo Hao
    Seeger, Nico
    Breitenstein, Stefan
    Grochola, Filip Lukasz
    Di Martino, Marcello
    Secanella, Luis
    Busquets, Juli
    Dorcaratto, Dimitri
    Mora-Oliver, Isabel
    Ingallinella, Sara
    Salvia, Roberto
    Abu Hilal, Mohammad
    Aldrighetti, Luca
    Ielpo, Benedetto
    [J]. EJSO, 2024, 50 (07):
  • [6] A Machine Learning Model for Detection of Coronary Artery Disease Using Noninvasive Clinical Parameters
    Sayadi, Mohammadjavad
    Varadarajan, Vijayakumar
    Sadoughi, Farahnaz
    Chopannejad, Sara
    Langarizadeh, Mostafa
    [J]. LIFE-BASEL, 2022, 12 (11):
  • [7] Detection of coronary artery disease using machine learning algorithms
    Vashistha, Kriti
    Bokhare, Anuja
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2023, 43 (02) : 83 - 91
  • [8] Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach
    Lezcano-Valverde, Jose M.
    Salazar, Fernando
    Leon, Leticia
    Toledano, Esther
    Jover, Juan A.
    Fernandez-Gutierrez, Benjamin
    Soudah, Eduardo
    Gonzalez-Alvaro, Isidoro
    Abasolo, Lydia
    Rodriguez-Rodriguez, Luis
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [9] Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach
    José M. Lezcano-Valverde
    Fernando Salazar
    Leticia León
    Esther Toledano
    Juan A. Jover
    Benjamín Fernandez-Gutierrez
    Eduardo Soudah
    Isidoro González-Álvaro
    Lydia Abasolo
    Luis Rodriguez-Rodriguez
    [J]. Scientific Reports, 7
  • [10] Model selection for metabolomics: predicting diagnosis of coronary artery disease using automated machine learning
    Orlenko, Alena
    Kofink, Daniel
    Lyytikainen, Leo-Pekka
    Nikus, Kjell
    Mishra, Pashupati
    Kuukasjarvi, Pekka
    Karhunen, Pekka J.
    Kahonen, Mika
    Laurikka, Jari O.
    Lehtimaki, Terho
    Asselbergs, Folkert W.
    Moore, Jason H.
    [J]. BIOINFORMATICS, 2020, 36 (06) : 1772 - 1778