Predictive features for early cancer detection in Barrett's esophagus using Volumetric Laser Endomicroscopy

被引:15
|
作者
van der Sommen, Fons [1 ,2 ]
Klomp, Sander R. [1 ]
Swager, Anne-Fre [2 ]
Zinger, Svitlana [1 ]
Curvers, Wouter L. [2 ,3 ]
Bergman, Jacques J. G. H. M. [2 ]
Schoon, Erik J. [3 ]
de With, Peter H. N. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Acad Med Ctr, Dept Gastroenterol, Postbus 22660, NL-1100 DD Amsterdam, Netherlands
[3] Catharina Hosp, Dept Gastroenterol & Hepathol, POB 1350, NL-5602 ZA Eindhoven, Netherlands
关键词
Computer-aided detection and diagnosis; Endoscopy; Esophageal adenocarcinoma; Optical Coherence Tomography; Barrett's Esophagus; OPTICAL COHERENCE TOMOGRAPHY; ENDOSCOPIC RESECTION; NEOPLASIA; RISK; CLASSIFICATION; SURVEILLANCE; DYSPLASIA; EXPERTS; MODEL;
D O I
10.1016/j.compmedimag.2018.02.007
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The incidence of Barrett cancer is increasing rapidly and current screening protocols often miss the disease at an early, treatable stage. Volumetric Laser Endomicroscopy (VLE) is a promising new tool for finding this type of cancer early, capturing a full circumferential scan of Barrett's Esophagus (BE), up to 3-mm depth. However, the interpretation of these VLE scans can be complicated, due to the large amount of cross-sectional images and the subtle grayscale variations. Therefore, algorithms for automated analysis of VLE data can offer a valuable contribution to its overall interpretation. In this study, we broadly investigate the potential of Computer-Aided Detection (CADe) for the identification of early Barrett's cancer using VLE. We employ a histopathologically validated set of ex-vivo VLE images for evaluating and comparing a considerable set of widely-used image features and machine learning algorithms. In addition, we show that incorporating clinical knowledge in feature design, leads to a superior classification performance and additional benefits, such as low complexity and fast computation time. Furthermore, we identify an optimal tissue depth for classification of 0.5-1.0 mm, and propose an extension to the evaluated features that exploits this phenomenon, improving their predictive properties for cancer detection in VLE data. Finally, we compare the performance of the CADe methods with the classification accuracy of two VLE experts. With a maximum Area Under the Curve (AUC) in the range of 0.90-0.93 for the evaluated features and machine learning methods versus an AUC of 0.81 for the medical experts, our experiments show that computer-aided methods can achieve a considerably better performance than trained human observers in the analysis of VLE data.
引用
收藏
页码:9 / 20
页数:12
相关论文
共 50 条
  • [21] Volumetric laser endomicroscopy interpretation and feature analysis in dysplastic Barrett's esophagus
    Kamboj, Amrit K.
    Kahn, Allon
    Wolfsen, Herbert C.
    Trindade, Arvind J.
    Ganguly, Eric K.
    Otaki, Fouad
    Chan, Daniel
    Zakko, Liam
    Visrodia, Kavel
    Lutzke, Lori
    Wang, Kenneth K.
    Leggett, Cadman L.
    [J]. JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2018, 33 (10) : 1761 - 1765
  • [22] Deep principal dimension encoding for the classification of early neoplasia in Barrett's Esophagus with volumetric laser endomicroscopy
    van der Putten, Joost
    Struyvenberg, Maarten
    de Groof, Jeroen
    Scheeve, Thom
    Curvers, Wouter
    Schoon, Erik
    Bergman, Jacques J. G. H. M.
    de With, Peter H. N.
    van der Sommen, Fons
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 80
  • [23] Volumetric laser endomicroscopy in Barrett's esophagus: a feasibility study on histological correlation
    Swager, A.
    Boerwinkel, D. F.
    de Bruin, D. M.
    Weusten, B. L.
    Faber, D. J.
    Meijer, S. L.
    van Leeuwen, T. G.
    Curvers, W. L.
    Bergman, J. J.
    [J]. DISEASES OF THE ESOPHAGUS, 2016, 29 (06) : 505 - 512
  • [24] Endoscopic Surveillance of Barrett's Esophagus Using Volumetric Laser Endomicroscopy With Artificial Intelligence Image Enhancement
    Trindade, Arvind J.
    McKinley, Matthew J.
    Fan, Cathy
    Leggett, Cadman L.
    Kahn, Allon
    Pleskow, Douglas K.
    [J]. GASTROENTEROLOGY, 2019, 157 (02) : 303 - 305
  • [25] A Large Single Center Experience Using Volumetric Laser Endomicroscopy (VLE) in the Management of Barrett's Esophagus
    Elden, Andrew C.
    Tofani, Christina
    Infantolino, Anthony
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 2020, 115 : S184 - S185
  • [26] ACCURACY OF VOLUMETRIC LASER ENDOMICROSCOPY FOR DYSPLASIA IN BARRETT'S ESOPHAGUS: A PROSPECTIVE COHORT STUDY
    Templeton, Adam W.
    Westerhoff, Maria
    Burke, Wynn
    Dickinson, Brandon
    Singla, Anand
    Inadomi, John M.
    Saunders, Michael D.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2020, 91 (06) : AB253 - AB253
  • [27] RISK STRATIFICATION OF BARRETT'S ESOPHAGUS WITH LOW-GRADE DYSPLASIA USING VOLUMETRIC LASER ENDOMICROSCOPY
    Kahn, Allon
    Kamboj, Amrit
    Iyer, Prasad G.
    Wang, Kenneth K.
    Leggett, Cadman L.
    [J]. GASTROENTEROLOGY, 2019, 156 (06) : S249 - S249
  • [28] DIAGNOSTIC YIELD OF VOLUMETRIC LASER ENDOMICROSCOPY FOR BARRETT'S ESOPHAGUS DYSPLASIA WITH FEATURE ANALYSIS
    Kamboj, Amrit K.
    Kahn, Allon
    Iyer, Prasad G.
    Wang, Kenneth K.
    Leggett, Cadman L.
    [J]. GASTROENTEROLOGY, 2019, 156 (06) : S700 - S701
  • [29] Computer-Assisted Image Interpretation of Volumetric Laser Endomicroscopy in Barrett's Esophagus
    Rodriguez-Diaz, Eladio
    Singh, Satish K.
    [J]. GASTROENTEROLOGY, 2015, 148 (04) : S91 - S92
  • [30] Volumetric Laser Endomicroscopy (VLE): An OFDI Case Study of Barrett's Esophagus with Dysplasia
    Blackshear, Leslie
    Aranda-Michel, Edgar
    Wolfsen, Herbert
    Wallace, Michael
    Tearney, Gary
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 2013, 108 : S656 - S656