Predictive features for early cancer detection in Barrett's esophagus using Volumetric Laser Endomicroscopy

被引:15
|
作者
van der Sommen, Fons [1 ,2 ]
Klomp, Sander R. [1 ]
Swager, Anne-Fre [2 ]
Zinger, Svitlana [1 ]
Curvers, Wouter L. [2 ,3 ]
Bergman, Jacques J. G. H. M. [2 ]
Schoon, Erik J. [3 ]
de With, Peter H. N. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Acad Med Ctr, Dept Gastroenterol, Postbus 22660, NL-1100 DD Amsterdam, Netherlands
[3] Catharina Hosp, Dept Gastroenterol & Hepathol, POB 1350, NL-5602 ZA Eindhoven, Netherlands
关键词
Computer-aided detection and diagnosis; Endoscopy; Esophageal adenocarcinoma; Optical Coherence Tomography; Barrett's Esophagus; OPTICAL COHERENCE TOMOGRAPHY; ENDOSCOPIC RESECTION; NEOPLASIA; RISK; CLASSIFICATION; SURVEILLANCE; DYSPLASIA; EXPERTS; MODEL;
D O I
10.1016/j.compmedimag.2018.02.007
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The incidence of Barrett cancer is increasing rapidly and current screening protocols often miss the disease at an early, treatable stage. Volumetric Laser Endomicroscopy (VLE) is a promising new tool for finding this type of cancer early, capturing a full circumferential scan of Barrett's Esophagus (BE), up to 3-mm depth. However, the interpretation of these VLE scans can be complicated, due to the large amount of cross-sectional images and the subtle grayscale variations. Therefore, algorithms for automated analysis of VLE data can offer a valuable contribution to its overall interpretation. In this study, we broadly investigate the potential of Computer-Aided Detection (CADe) for the identification of early Barrett's cancer using VLE. We employ a histopathologically validated set of ex-vivo VLE images for evaluating and comparing a considerable set of widely-used image features and machine learning algorithms. In addition, we show that incorporating clinical knowledge in feature design, leads to a superior classification performance and additional benefits, such as low complexity and fast computation time. Furthermore, we identify an optimal tissue depth for classification of 0.5-1.0 mm, and propose an extension to the evaluated features that exploits this phenomenon, improving their predictive properties for cancer detection in VLE data. Finally, we compare the performance of the CADe methods with the classification accuracy of two VLE experts. With a maximum Area Under the Curve (AUC) in the range of 0.90-0.93 for the evaluated features and machine learning methods versus an AUC of 0.81 for the medical experts, our experiments show that computer-aided methods can achieve a considerably better performance than trained human observers in the analysis of VLE data.
引用
收藏
页码:9 / 20
页数:12
相关论文
共 50 条
  • [1] Volumetric Laser Endomicroscopy in Barrett's Esophagus
    Elsbernd, Benjamin L.
    Dunbar, Kerry B.
    [J]. TECHNIQUES AND INNOVATIONS IN GASTROINTESTINAL ENDOSCOPY, 2021, 23 (01): : 69 - 76
  • [2] Identification of volumetric laser endomicroscopy features predictive for early neoplasia in Barrett's esophagus using high-quality histological correlation
    Swager, Anne-Fre
    Tearney, Guillermo J.
    Leggett, Cadman L.
    van Oijen, Martijn G. H.
    Meijer, Sybren L.
    Weusten, Bas L.
    Curvers, Wouter L.
    Bergman, Jacques J. G. H. M.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2017, 85 (05) : 918 - +
  • [3] Volumetric laser endomicroscopy in the management of Barrett's esophagus
    Trindade, Arvind J.
    Leggett, Cadman L.
    Chang, Kenneth J.
    [J]. CURRENT OPINION IN GASTROENTEROLOGY, 2017, 33 (04) : 254 - 260
  • [4] Detection of Barrett's Esophagus Dysplasia Using a Novel Volumetric Laser Endomicroscopy Computer Algorithm
    Kamboj, Amrit K.
    Chan, Daniel K.
    Zakko, Liam
    Visrodia, Kavel
    Otaki, Fouad
    Lutzke, Lori S.
    Wang, Kenneth K.
    Leggett, Cadman L.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2017, 85 (05) : AB518 - AB518
  • [5] Volumetric laser endomicroscopy in Barrett's esophagus: ready for primetime
    Houston, Trevor
    Sharma, Prateek
    [J]. TRANSLATIONAL GASTROENTEROLOGY AND HEPATOLOGY, 2020, 5
  • [6] Potential Role for Volumetric Laser Endomicroscopy in Barrett's Esophagus
    Konda, Vani J.
    Siddiqui, Uzma D.
    Xiao, Shu-Yuan
    Koons, Ann
    Turner, Jerrold R.
    Pabla, Baldeep
    Gelrud, Andres
    Hart, John
    Waxman, Irving
    [J]. GASTROENTEROLOGY, 2014, 146 (05) : S521 - S521
  • [7] Comparative diagnostic performance of volumetric laser endomicroscopy and confocal laser endomicroscopy in the detection of dysplasia associated with Barrett's esophagus
    Leggett, Cadman L.
    Gorospe, Emmanuel C.
    Chan, Daniel K.
    Muppa, Prasuna
    Owens, Victoria
    Smyrk, Thomas C.
    Anderson, Marlys
    Lutzke, Lori S.
    Tearney, Guillermo
    Wang, Kenneth K.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2016, 83 (05) : 880 - U58
  • [8] Expert Consensus on In-Vivo Volumetric Laser Endomicroscopy Features of Barrett's Esophagus Dysplasia
    Kamboj, Amrit K.
    Chan, Daniel K.
    Zakko, Liam
    Visrodia, Kavel
    Otaki, Fouad
    Trindade, Arvind J.
    Ganguly, Eric K.
    Wolfsen, Herbert C.
    Wallace, Michael B.
    Lutzke, Lori S.
    Wang, Kenneth K.
    Leggett, Cadman L.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2017, 85 (05) : AB500 - AB500
  • [9] Interpretation of volumetric laser endomicroscopy in Barrett's esophagus using image enhancement software
    Kamboj, A. K.
    Hoversten, P.
    Kahn, A. K.
    Trindade, A. J.
    Iyer, P. G.
    Wang, K. K.
    Leggett, C. L.
    [J]. DISEASES OF THE ESOPHAGUS, 2019, 32 (11)
  • [10] Computer-aided detection of early Barrett's neoplasia using volumetric laser endomicroscopy
    Swager, Anne-Fre
    van der Sommen, Fons
    Klomp, Sander R.
    Zinger, Sveta
    Meijer, Sybren L.
    Schoon, Erik J.
    Bergman, Jacques J. G. H. M.
    de With, Peter H.
    Curvers, Wouter L.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2017, 86 (05) : 839 - 846