Genotype imputation for genome-wide association studies

被引:1107
|
作者
Marchini, Jonathan [1 ]
Howie, Bryan [2 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
基金
美国国家科学基金会; 英国医学研究理事会;
关键词
HAPLOTYPE-PHASE INFERENCE; HIDDEN MARKOV-MODELS; SUSCEPTIBILITY LOCI; MULTIPLE-SCLEROSIS; STATISTICAL-METHOD; HLA ALLELES; METAANALYSIS; ACCURACY; REPLICATION; RISK;
D O I
10.1038/nrg2796
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In the past few years genome-wide association (GWA) studies have uncovered a large number of convincingly replicated associations for many complex human diseases. Genotype imputation has been used widely in the analysis of GWA studies to boost power, fine-map associations and facilitate the combination of results across studies using meta-analysis. This Review describes the details of several different statistical methods for imputing genotypes, illustrates and discusses the factors that influence imputation performance, and reviews methods that can be used to assess imputation performance and test association at imputed SNPs.
引用
收藏
页码:499 / 511
页数:13
相关论文
共 50 条
  • [21] Genome-wide association studies
    Willson, Joseph
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [22] Genome-Wide Association Studies
    Guo, Xiuqing
    Rotter, Jerome I.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (17): : 1705 - 1706
  • [23] Assessment of genotyping array performance for genome-wide association studies and imputation in African cattle
    Valentina Riggio
    Abdulfatai Tijjani
    Rebecca Callaby
    Andrea Talenti
    David Wragg
    Emmanuel T. Obishakin
    Chukwunonso Ezeasor
    Frans Jongejan
    Ndudim I. Ogo
    Fred Aboagye-Antwi
    Alassane Toure
    Jahashi Nzalawahej
    Boubacar Diallo
    Ayao Missohou
    Adrien M. G. Belem
    Appolinaire Djikeng
    Nick Juleff
    Josephus Fourie
    Michel Labuschagne
    Maxime Madder
    Karen Marshall
    James G. D. Prendergast
    Liam J. Morrison
    Genetics Selection Evolution, 54
  • [24] Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies
    Ke Hao
    Eugene Chudin
    Joshua McElwee
    Eric E Schadt
    BMC Genetics, 10
  • [25] Assessment of genotyping array performance for genome-wide association studies and imputation in African cattle
    Riggio, Valentina
    Tijjani, Abdulfatai
    Callaby, Rebecca
    Talenti, Andrea
    Wragg, David
    Obishakin, Emmanuel T.
    Ezeasor, Chukwunonso
    Jongejan, Frans
    Ogo, Ndudim, I
    Aboagye-Antwi, Fred
    Toure, Alassane
    Nzalawahej, Jahashi
    Diallo, Boubacar
    Missohou, Ayao
    Belem, Adrien M. G.
    Djikeng, Appolinaire
    Juleff, Nick
    Fourie, Josephus
    Labuschagne, Michel
    Madder, Maxime
    Marshall, Karen
    Prendergast, James G. D.
    Morrison, Liam J.
    GENETICS SELECTION EVOLUTION, 2022, 54 (01)
  • [26] Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies
    Hao, Ke
    Chudin, Eugene
    McElwee, Joshua
    Schadt, Eric E.
    BMC GENETICS, 2009, 10
  • [27] Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies
    Douglas K Childers
    Guolian Kang
    Nianjun Liu
    Guimin Gao
    Kui Zhang
    BMC Proceedings, 3 (Suppl 7)
  • [28] Using genotype imputation to integrate Canola populations for genome-wide association and genomic prediction of blackleg resistance
    Zhao, Huanhuan
    Macleod, Iona M.
    Keeble-Gagnere, Gabriel
    Barbulescu, Denise M.
    Tibbits, Josquin F.
    Kaur, Sukhjiwan
    Hayden, Matthew
    BMC GENOMICS, 2025, 26 (01):
  • [29] False positive findings during genome-wide association studies with imputation: influence of allele frequency and imputation accuracy
    Zhang, Zhihui
    Xiao, Xiangjun
    Zhou, Wen
    Zhu, Dakai
    Amos, Christopher, I
    HUMAN MOLECULAR GENETICS, 2022, 31 (01) : 146 - 155
  • [30] GENOME-WIDE ASSOCIATION STUDIES Validating, augmenting and refining genome-wide association signals
    Ioannidis, John P. A.
    Thomas, Gilles
    Daly, Mark J.
    NATURE REVIEWS GENETICS, 2009, 10 (05) : 318 - 329