Global Contrast Based Salient Region Detection

被引:904
|
作者
Cheng, Ming-Ming [1 ]
Mitra, Niloy J. [2 ]
Huang, Xiaolei [3 ]
Torr, Philip H. S. [4 ]
Hu, Shi-Min [5 ]
机构
[1] Nankai Univ, Dept Comp Sci, Tianjin 300071, Peoples R China
[2] UCL, Dept Comp Sci, London WC1E 6BT, England
[3] Lehigh Univ, Dept Comp Sci & Engn, Bethlehem, PA 18015 USA
[4] Univ Oxford, Dept Engn, Oxford OX1 2JD, England
[5] Tsinghua Univ, Dept Comp Sci & Technol, TNList, Beijing 100084, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Salient object detection; visual attention; saliency map; unsupervised segmentation; image retrieval; VISUAL-ATTENTION; IMAGE SEGMENTATION; OBJECT; SCENE; RECOGNITION; EXTRACTION; SEARCH; MODEL;
D O I
10.1109/TPAMI.2014.2345401
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.
引用
收藏
页码:569 / 582
页数:14
相关论文
共 50 条
  • [21] Global-Context Based Salient Region Detection in Nature Images
    Bao, Hong
    Xu, De
    Tang, Yingjun
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (05): : 1556 - 1559
  • [22] Salient Region Detection Using Contrast-Based Saliency and Watershed Segmentation
    Ngau, Christopher Wing Hong
    Ang, Li-Minn
    Seng, Kah Phooi
    [J]. COMPUTING & INFORMATICS, 2009, : 475 - 479
  • [23] Salient Object Detection via Global Contrast Graph
    Nouri, Fatemeh
    Kazemi, Kamran
    Danyali, Habibollah
    [J]. 2015 SIGNAL PROCESSING AND INTELLIGENT SYSTEMS CONFERENCE (SPIS), 2015, : 159 - 163
  • [24] Salient object detection based on global multi-scale superpixel contrast
    Yang, Jinfu
    Wang, Ying
    Wang, Guanghui
    Li, Mingai
    [J]. IET COMPUTER VISION, 2017, 11 (08) : 710 - 716
  • [25] Salient region detection combining spatial distribution and global contrast (vol 51, 047007, 2012)
    He, Xin
    Jing, Huiyun
    Han, Qi
    Niu, Xiamu
    [J]. OPTICAL ENGINEERING, 2012, 51 (05)
  • [26] Salient Region Detection via Integrating Diffusion-Based Compactness and Local Contrast
    Zhou, Li
    Yang, Zhaohui
    Yuan, Qing
    Zhou, Zongtan
    Hu, Dewen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 3308 - 3320
  • [27] Salient Region Detection Using Local and Global Saliency
    Cheung, Yiu-ming
    Peng, Qinmu
    [J]. 2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 210 - 213
  • [28] Aggregating complementary boundary contrast with smoothing for salient region detection
    Li, Ruihui
    Cai, Jianrui
    Zhang, Hanling
    Wang, Taihong
    [J]. VISUAL COMPUTER, 2017, 33 (09): : 1155 - 1167
  • [29] Salient object detection via region contrast and graph regularization
    Xingming WU
    Mengnan DU
    Weihai CHEN
    Jianhua WANG
    [J]. Science China(Information Sciences), 2016, 59 (03) : 46 - 59
  • [30] Aggregating complementary boundary contrast with smoothing for salient region detection
    Ruihui Li
    Jianrui Cai
    Hanling Zhang
    Taihong Wang
    [J]. The Visual Computer, 2017, 33 : 1155 - 1167