Toroidal modeling of runaway avalanche in DIII-D discharges

被引:3
|
作者
Liu, Yueqiang [1 ]
Li, L. [2 ]
Paz-Soldan, C. [1 ]
Parks, P. B. [1 ]
Lao, L. L. [1 ]
机构
[1] Gen Atom, POB 85608, San Diego, CA 92186 USA
[2] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
关键词
runaway current; avalanche; DIII-D; plasma shape;
D O I
10.1088/1741-4326/abf819
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A toroidal modeling tool is developed to study the runaway electron (RE) avalanche production process in tokamak plasmas, by coupling the Rosenbluth-Putvinski avalanche model (Rosenbluth and Putvinski 1997 Nucl. Fusion 37 1355) with an n = 0 magneto-hydrodynamic (MHD) solver. Initial value numerical simulations are carried out for two DIII-D discharges with different plasma shapes (one near circular, and the other with high elongation). It is found that, assuming the same level of about 1% seed current level, the Rosenbluth-Putvinski model somewhat underestimates the RE plateau current for the circular-shaped plasma, as compared with that measured in DIII-D experiments. For an elongated, higher current plasma, simulations find strong runaway current avalanche production despite the lack of measured plateau RE current in experiments. A possible reason for this discrepancy is a lack of additional RE dissipation physics in the present two-dimensional model. Systematic scans of the plasma boundary shape, at fixed pre-disruption plasma current, find that the plasma elongation helps to reduce the RE avalanche production, confirming recent results obtained with an analytic model (Fulop et al 2020 J. Plasma Phys. 86 474860101). The effect of the plasma triangularity (either positive or negative), on the other hand, has a minor effect. On the physics side, the avalanche process involves two competing mechanisms associated with the electric field. On the one hand, a stronger electric field produces a higher instantaneous avalanche growth rate. On the other hand, a fast growing RE current quickly reduces the fraction of the conduction current together with the electric field, and hence a faster dissipation of the poloidal flux. As a final result of these two dynamic processes, the runaway plateau current is not always the largest with the strongest initial electric field. These results lay the foundation for future self-consistent inclusion of the MHD dynamics and the RE amplification process.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] IMPURITY PROFILES FOR H-MODE DISCHARGES IN DIII-D
    CONTENT, DA
    MOOS, HW
    PERRY, ME
    BROOKS, NH
    MAHDAVI, MA
    PETRIE, TW
    STJOHN, H
    SCHISSEL, DP
    HULSE, RA
    NUCLEAR FUSION, 1990, 30 (04) : 701 - 715
  • [32] Stationary high-performance discharges in the DIII-D tokamak
    Luce, TC
    Wade, MR
    Ferron, JR
    Hyatt, AW
    Kellman, AG
    Kinsey, JE
    La Haye, RJ
    Lasnier, CJ
    Murakami, M
    Politzer, PA
    Scoville, JT
    NUCLEAR FUSION, 2003, 43 (05) : 321 - 329
  • [33] Vertical control of DIII-D discharges with strong negative triangularity
    Nelson, A. O.
    Hyatt, A.
    Wehner, W.
    Welander, A.
    Paz-Soldan, C.
    Osborne, T.
    Anand, H.
    Thome, K. E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (04)
  • [34] VERY HIGH CONFINEMENT DISCHARGES IN DIII-D AFTER BORONIZATION
    JACKSON, GL
    WINTER, J
    TAYLOR, TS
    GREENFIELD, CM
    BURRELL, KH
    CARLSTROM, TN
    DEBOO, JC
    DOYLE, EJ
    GROEBNER, RJ
    LAO, LL
    RETTIG, C
    SCHISSEL, DP
    STRAIT, EJ
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07): : 2181 - 2188
  • [36] Effects of impurity seeding in DIII-D radiating mantle discharges
    Jackson, GL
    Murakami, M
    McKee, GR
    Baker, DR
    Boedo, JA
    La Haye, RJ
    Lasnier, CJ
    Leonard, AW
    Messiaen, AM
    Ongena, J
    Staebler, GM
    Unterberg, B
    Wade, MR
    Watkins, JG
    West, WP
    NUCLEAR FUSION, 2002, 42 (01) : 28 - 41
  • [37] Current Profile Control for the Development of Consistent Discharges in DIII-D
    Wehner, William
    Barton, Justin E.
    Boyer, Mark D.
    Schuster, Eugenio
    Luce, Tim C.
    Ferron, John R.
    Walker, Michael L.
    Humphreys, David A.
    Penaflor, Ben G.
    Johnson, Robert D.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 2601 - 2606
  • [38] Electron heat transport in improved confinement discharges in DIII-D
    Stallard, B.W.
    Greenfield, C.M.
    Staebler, G.M.
    Rettig, C.L.
    Chu, M.S.
    Austin, M.E.
    Baker, D.R.
    Baylor, L.R.
    Burrell, K.H.
    DeBoo, J.C.
    DeGrassie, J.S.
    Doyle, E.J.
    Lohr, J.
    McKee, G.R.
    Miller, R.L.
    Peebles, W.A.
    Petty, C.C.
    Pinsker, R.I.
    Rice, B.W.
    Rhodes, T.L.
    Waltz, R.E.
    Zeng, L.
    Physics of Plasmas, 1999, 6 (5 I): : 1978 - 1984
  • [39] Analysis of shot-to-shot variability in post-disruption runaway electron currents for diverted DIII-D discharges
    Izzo, V. A.
    Humphreys, D. A.
    Kornbluth, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (09)
  • [40] Long pulse advanced tokamak discharges in the DIII-D tokamak
    Petersen, PI
    NUCLEAR FUSION, 2003, 43 (09) : 812 - 816