Stabilizing infrared quantum cascade laser beams for standoff detection applications

被引:1
|
作者
Breshike, Christopher J. [1 ]
Kendziora, Christopher A. [1 ]
Furstenberg, Robert [1 ]
Nguyen, Viet [1 ]
McGill, R. Andrew [1 ]
机构
[1] Naval Res Lab, Code 6365,4555 Overlook Ave SW, Washington, DC 20375 USA
关键词
standoff detection; infrared spectroscopy; quantum cascade laser; infrared imaging; active beam stabilization; infrared fibers; photo-thermal;
D O I
10.1117/12.2251592
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We are developing a technology for standoff detection of chemicals on surfaces based on active broadband infrared imaging spectroscopy. This approach leverages one or more IR quantum cascade lasers (QCL), tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface response upon laser illumination. The broadband IR signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. Such standoff spectroscopic imaging applications place stringent stability requirements on the wavelength, power, pulse width and spatial beam profile that pose a challenge for broadly tunable IR QCL. In this manuscript, we discuss methods to mitigate these challenges, including extensive calibration and active feedback stabilization. These mitigation methods should benefit many applications of IR QCL, including those for standoff detection, spectroscopy and imaging.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] GSMBE grown infrared quantum cascade laser structures
    Li, AZ
    Chen, JX
    Yang, QK
    Ren, YC
    JOURNAL OF CRYSTAL GROWTH, 1999, 201 : 901 - 904
  • [32] Sub Microsecond Tuning and Rapid Transmission and Standoff Detection Using Quantum Cascade Lasers
    Kumar, C.
    Patel, N.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [33] Real-time standoff detection of nitrogen isotopes in ammonia plumes using a swept external cavity quantum cascade laser
    Phillips, Mark C.
    Brumfield, Brian E.
    Harilal, Sivanandan S.
    OPTICS LETTERS, 2018, 43 (17) : 4065 - 4068
  • [34] Standoff detection of explosives with broad band tunable external cavity quantum cascade lasers
    Fuchs, F.
    Hugger, S.
    Kinzer, M.
    Yang, Q. K.
    Bronner, W.
    Aidam, R.
    Degreif, K.
    Rademacher, S.
    Schnuerer, F.
    Schweikert, W.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES IX, 2012, 8268
  • [35] Generation of Bessel beams using a terahertz quantum cascade laser
    Shaukat, M. U.
    Dean, P.
    Khanna, S. P.
    Lachab, M.
    Chakraborty, S.
    Linfield, E. H.
    Davies, A. G.
    OPTICS LETTERS, 2009, 34 (07) : 1030 - 1032
  • [36] Spectroscopic detection of biological NO with a quantum cascade laser
    Menzel, L
    Kosterev, AA
    Curl, RF
    Tittel, FK
    Gmachl, C
    Capasso, F
    Sivco, DL
    Baillargeon, JN
    Hutchinson, AL
    Cho, AY
    Urban, W
    APPLIED PHYSICS B-LASERS AND OPTICS, 2001, 72 (07): : 859 - 863
  • [37] Spectroscopic detection of biological NO with a quantum cascade laser
    L. Menzel
    A.A. Kosterev
    R.F. Curl
    F.K. Tittel
    C. Gmachl
    F. Capasso
    D.L. Sivco
    J.N. Baillargeon
    A.L. Hutchinson
    A.Y. Cho
    W. Urban
    Applied Physics B, 2001, 72 : 859 - 863
  • [38] Infrared Hyperspectral Standoff Detection of Explosives
    Fuchs, F.
    Hugger, S.
    Jarvis, J.
    Blattmann, V.
    Kinzer, M.
    Yang, Q. K.
    Ostendorf, R.
    Bronner, W.
    Driad, R.
    Aidam, R.
    Wagner, J.
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XIV, 2013, 8710
  • [39] Detection and measurement of electroreflectance on quantum cascade laser device using Fourier transform infrared microscope
    Enobio, Eli Christopher I.
    Ohtani, Keita
    Ohno, Yuzo
    Ohno, Hideo
    APPLIED PHYSICS LETTERS, 2013, 103 (23)
  • [40] Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser
    Zhou Yu
    Cao Yuan
    Zhu Gong-Dong
    Liu Kun
    Tan Tu
    Wang Li-Jun
    Gao Xiao-Ming
    ACTA PHYSICA SINICA, 2018, 67 (08)