The Relativistic Quantum Boltzmann Equation Near Equilibrium

被引:8
|
作者
Bae, Gi-Chan [1 ]
Jang, Jin Woo [2 ]
Yun, Seok-Bae [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[3] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
关键词
BOSE-EINSTEIN PARTICLES; FERMI-DIRAC PARTICLES; GLOBAL EXISTENCE; SOFT POTENTIALS; ASYMPTOTIC STABILITY; NORDHEIM EQUATION; LANDAU EQUATION; CAUCHY-PROBLEM; TIME DECAY; CONVERGENCE;
D O I
10.1007/s00205-021-01643-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The relativistic quantum Boltzmann equation (or the relativistic Uehling-Uhlenbeck equation) describes the dynamics of single-species fast-moving quantum particles. With the recent development of relativistic quantum mechanics, the relativistic quantum Boltzmann equation has been widely used in physics and engineering, for example in the quantum collision experiments and the simulations of electrons in graphene. In spite of such importance, there has, to the best of our knowledge, been no mathematical theory on the existence of solutions to the relativistic quantum Boltzmann equation. In this paper, we prove the global existence of a unique classical solution to the relativistic Boltzmann equation for both bosons and fermions, when the initial distribution is nearby a global equilibrium.
引用
收藏
页码:1593 / 1644
页数:52
相关论文
共 50 条
  • [31] On the Determinant Problem for the Relativistic Boltzmann Equation
    James Chapman
    Jin Woo Jang
    Robert M. Strain
    [J]. Communications in Mathematical Physics, 2021, 384 : 1913 - 1943
  • [32] The Relativistic Boltzmann Equation and Two Times
    Horwitz, L. P.
    [J]. ENTROPY, 2020, 22 (08)
  • [33] BOUNDED SOLUTION OF THE RELATIVISTIC BOLTZMANN EQUATION
    罗兰
    喻洪俊
    [J]. Acta Mathematica Scientia(English Series), 2015, 35 (04) : 777 - 786
  • [34] Theory and applications of the relativistic Boltzmann equation
    Kremer, Gilberto M.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (02)
  • [35] CAUCHY PROBLEM FOR RELATIVISTIC BOLTZMANN EQUATION
    BANCEL, D
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (14): : 694 - &
  • [36] The relativistic Boltzmann equation for soft potentials
    Duan, Renjun
    Yu, Hongjun
    [J]. ADVANCES IN MATHEMATICS, 2017, 312 : 315 - 373
  • [37] CAUCHY PROBLEM FOR RELATIVISTIC BOLTZMANN EQUATION
    BANCEL, D
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (25): : 1710 - &
  • [38] An Inverse Problem for the Relativistic Boltzmann Equation
    Tracey Balehowsky
    Antti Kujanpää
    Matti Lassas
    Tony Liimatainen
    [J]. Communications in Mathematical Physics, 2022, 396 : 983 - 1049
  • [39] An Inverse Problem for the Relativistic Boltzmann Equation
    Balehowsky, Tracey
    Kujanpaa, Antti
    Lassas, Matti
    Liimatainen, Tony
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 396 (03) : 983 - 1049
  • [40] On the Determinant Problem for the Relativistic Boltzmann Equation
    Chapman, James
    Jang, Jin Woo
    Strain, Robert M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (03) : 1913 - 1943