Genomic classification of the RAS network identifies a personalized treatment strategy for lung cancer

被引:12
|
作者
El-Chaar, Nader N. [1 ]
Piccolo, Stephen R. [2 ,3 ]
Boucher, Kenneth M. [1 ]
Cohen, Adam L. [4 ]
Chang, Jeffrey T. [5 ]
Moos, Philip J. [2 ]
Bild, Andrea H. [1 ,2 ]
机构
[1] Univ Utah, Dept Oncol Sci, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Pharmacol & Toxicol, Salt Lake City, UT 84112 USA
[3] Boston Univ, Sch Med, Div Computat Biomed, Boston, MA 02118 USA
[4] Univ Utah, Div Oncol, Dept Med, Salt Lake City, UT 84112 USA
[5] Univ Texas Houston, Sch Med, Dept Integrat Biol & Pharmacol, Houston, TX 77030 USA
关键词
Cancer; Genomics; Networks; RAS; Signaling; Individualized medicine; PROTEIN S6 PHOSPHORYLATION; GENE-EXPRESSION SIGNATURE; BREAST-CANCER; KRAS MUTATION; RAF/MEK/ERK PATHWAY; SIGNALING PATHWAYS; ANTITUMOR-ACTIVITY; NEGATIVE-FEEDBACK; CELL; ACTIVATION;
D O I
10.1016/j.molonc.2014.05.005
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Better approaches are needed to evaluate a single patient's drug response at the genomic level. Targeted therapy for signaling pathways in cancer has met limited success in part due to the exceedingly interwoven nature of the pathways. In particular, the highly complex RAS network has been challenging to target. Effectively targeting the pathway requires development of techniques that measure global network activity to account for pathway complexity. For this purpose, we used a gene-expression-based biomarker for RAS network activity in non-small cell lung cancer (NSCLC) cells, and screened for drugs whose efficacy was significantly highly correlated to RAS network activity. Results identified EGFR and MEK co-inhibition as the most effective treatment for RAS-active NSCLC amongst a panel of over 360 compounds and fractions. RAS activity was identified in both RAS-mutant and wild-type lines, indicating broad characterization of RAS signaling inclusive of multiple mechanisms of RAS activity, and not solely based on mutation status. Mechanistic studies demonstrated that co-inhibition of EGFR and MEK induced apoptosis and blocked both EGFR-RAS-RAF-MEK-ERK and EGFR-PI3K-AKT-RPS6 nodes simultaneously in RAS-active, but not RAS-inactive NSCLC. These results provide a comprehensive strategy to personalize treatment of NSCLC based on RAS network dysregulation and provide proof-of-concept of a genomic approach to classify and target complex signaling networks. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1339 / 1354
页数:16
相关论文
共 50 条
  • [21] Genomic Classification of Serous Ovarian Cancer with Adjacent Borderline Differentiates RAS Pathway and TP53-Mutant Tumors and Identifies NRAS as an Oncogenic Driver
    Emmanuel, Catherine
    Chiew, Yoke-Eng
    George, Joshy
    Etemadmoghadam, Dariush
    Anglesio, Michael S.
    Sharma, Raghwa
    Russell, Peter
    Kennedy, Catherine
    Fereday, Sian
    Hung, Jillian
    Galletta, Laura
    Hogg, Russell
    Wain, Gerard V.
    Brand, Alison
    Balleine, Rosemary
    MacConaill, Laura
    Palescandolo, Emanuele
    Hunter, Sally M.
    Campbell, Ian
    Dobrovic, Alexander
    Wong, Stephen Q.
    Do, Hongdo
    Clarke, Christine L.
    Harnett, Paul R.
    Bowtell, David D. L.
    deFazio, Anna
    CLINICAL CANCER RESEARCH, 2014, 20 (24) : 6618 - 6630
  • [22] A genomic strategy for the functional validation of colorectal cancer genes identifies potential therapeutic targets
    Grade, Marian
    Hummon, Amanda B.
    Camps, Jordi
    Emons, Georg
    Spitzner, Melanie
    Gaedcke, Jochen
    Hoermann, Patrick
    Ebner, Reinhard
    Becker, Heinz
    Difilippantonio, Michael J.
    Ghadimi, B. Michael
    Beissbarth, Tim
    Caplen, Natasha J.
    Ried, Thomas
    INTERNATIONAL JOURNAL OF CANCER, 2011, 128 (05) : 1069 - 1079
  • [23] Clinical testing for molecular targets for personalized treatment in lung cancer
    Lam, David C. L.
    RESPIROLOGY, 2013, 18 (02) : 233 - 237
  • [24] Personalized treatment in non-small cell lung cancer
    Delia Campos-Parra, Alma
    Cruz-Rico, Graciela
    Arrieta, Oscar
    REVISTA DE INVESTIGACION CLINICA-CLINICAL AND TRANSLATIONAL INVESTIGATION, 2012, 64 (04): : 377 - 386
  • [25] Genomic and proteomic profiling of lung cancers: Lung cancer classification in the age of targeted therapy
    Meyerson, M
    Carbone, D
    JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (14) : 3219 - 3226
  • [26] Optimized convolutional neural network for the classification of lung cancer
    Divya Paikaray
    Ashok Kumar Mehta
    Danish Ali Khan
    The Journal of Supercomputing, 2024, 80 : 1973 - 1989
  • [27] Optimized convolutional neural network for the classification of lung cancer
    Paikaray, Divya
    Mehta, Ashok Kumar
    Khan, Danish Ali
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (02): : 1973 - 1989
  • [28] Validation of the genomic Profile for the personalized Treatment of Breast Cancer: POLAR-Study
    Cieslak, Adrianna Monika
    Sonnhoff, Mathias Alexander
    STRAHLENTHERAPIE UND ONKOLOGIE, 2024, 200 (07) : 652 - 654
  • [29] Genomic and transcriptional heterogeneity-based precision in personalized treatment for breast cancer
    Antoniou, Persefoni
    Ziogas, Demosthenes E.
    Vlachioti, Aikaterini
    Lykoudis, EustathiosG
    Mitsis, Michail
    Roukos, Dimitrios H.
    PERSONALIZED MEDICINE, 2019, 16 (05) : 361 - 364
  • [30] Treatment outcome of atypical EGFR mutations in the German National Network Genomic Medicine Lung Cancer (nNuM)
    Janning, M.
    Sueptitz, J.
    Albers-Leischner, C.
    Delpy, P.
    Tufman, A.
    Velthaus-Rusik, J-L
    Reck, M.
    Jung, A.
    Kauffmann-Guerrero, D.
    Bonzheim, I
    Braendlein, S.
    Hummel, H-D
    Wiesweg, M.
    Schildhaus, H-U
    Stratmann, J. A.
    Sebastian, M.
    Alt, J.
    Buth, J.
    Esposito, I
    Berger, J.
    Toegel, L.
    Saalfeld, F. C.
    Wermke, M.
    Merkelbach-Bruse, S.
    Hillmer, A. M.
    Klauschen, F.
    Bokemeyer, C.
    Buettner, R.
    Wolf, J.
    Loges, S.
    ANNALS OF ONCOLOGY, 2022, 33 (06) : 602 - 615