Electrochemical Quality Assurance of Solid Oxide Electrolyser (SOEC) Stacks

被引:8
|
作者
Lang, M. [1 ]
Bohn, C. [1 ]
Couturier, K. [2 ]
Sun, X. [3 ]
McPhail, S. J. [4 ]
Malkow, T. [5 ]
Pilenga, A. [5 ]
Fu, Q. [6 ]
Liu, Q. [7 ]
机构
[1] German Aerosp Ctr DLR, D-70569 Stuttgart, Germany
[2] Univ Grenoble Alpes, CEA, LITEN, Grenoble, France
[3] Tech Univ Denmark DTU, Roskilde, Denmark
[4] Italian Agcy New Technol & Energy ENEA, Rome, Italy
[5] European Commiss, JRC, Petten, Netherlands
[6] European Inst Energy Res EIFER, Karlsruhe, Germany
[7] Nanyang Technol Univ Singapore NTU, Singapore, Singapore
关键词
IMPEDANCE;
D O I
10.1149/2.0041915jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High temperature solid oxide cells (SOC) are highly efficient and environmentally friendly electrochemical systems for the H-2/H2O and/or CO/CO2 redox reactions. The cells can be operated reversely either in electrolysis (SOEC) or fuel cell (SOFC) mode which facilitates this technology for power-to-gas-to-power application in renewable energy storage systems. However, the successful market introduction and public acceptance of the SOEC technology require high quality, reliability and reproducibility of the corresponding cells and stacks. Therefore, in the European funded project "Solid oxide cell and stack testing, safety and quality assurance" (SOCTESQA) pre-normative test modules and programs for high temperature solid oxide cells and stacks have been developed. Different EU project partners have tested identical SOC stacks in several testing campaigns with the same test programs. The paper presents and compares the results of the stacks in SOEC operation which have been obtained by application of the three most important test modules, e.g. current-voltage characteristics, electrochemical impedance spectroscopy and operation at constant current. The results are analyzed and discussed in context to the test input parameters, e.g. gas temperatures and steam supply stability. Quality aspects like repeatability and reproducibility among the different partners and among different test methods are statistically evaluated and discussed. (C) The Author(s) 2019. Published by ECS.
引用
收藏
页码:F1180 / F1189
页数:10
相关论文
共 50 条
  • [31] Modelling of solid oxide steam electrolyser Impact of the operating conditions on hydrogen production
    Laurencin, J.
    Kane, D.
    Delette, G.
    Deseure, J.
    Lefebvre-Joud, F.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (04) : 2080 - 2093
  • [32] ELECTROCHEMICAL CHARACTERIZATION OF VACUUM PLASMA SPRAYED PLANAR SOLID OXIDE FUEL CELLS AND SHORT STACKS FOR MOBILE APPLICATION
    Lang, M.
    Dresel, A.
    Franco, T.
    Ilhan, Z.
    Nestle, A.
    Schiller, G.
    Szabo, P.
    [J]. ADVANCES IN SOLID OXIDE FUEL CELLS, 2005, 26 (04): : 67 - 74
  • [33] Development and characterisation of glass and glass ceramic sealants for solid oxide electrolyser cells
    Hélène Nonnet
    Hichem Khedim
    François O. Méar
    [J]. Ionics, 2012, 18 : 441 - 447
  • [34] Catalyst-induced enhancement of direct methane synthesis in solid oxide electrolyser
    Biswas, Saheli
    Kulkarni, Aniruddha P.
    Fini, Daniel
    Rathore, Shambhu Singh
    Seeber, Aaron
    Giddey, Sarbjit
    Bhattacharya, Sankar
    [J]. ELECTROCHIMICA ACTA, 2021, 391
  • [35] Corrosion stability of ferritic stainless steels for solid oxide electrolyser cell interconnects
    Palcut, Marian
    Mikkelsen, Lars
    Neufeld, Kai
    Chen, Ming
    Knibbe, Ruth
    Hendriksen, Peter V.
    [J]. CORROSION SCIENCE, 2010, 52 (10) : 3309 - 3320
  • [36] Development and Characterization of Glass and Glass Ceramic Sealants for Solid Oxide Electrolyser Cells
    Nonnet, Helene
    Khedim, Hichem
    Mear, Francois
    [J]. JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2012, 48 (02): : 205 - 210
  • [37] Development and characterisation of glass and glass ceramic sealants for solid oxide electrolyser cells
    Nonnet, Helene
    Khedim, Hichem
    Mear, Francois O.
    [J]. IONICS, 2012, 18 (05) : 441 - 447
  • [38] Development of a quality assurance process for the SoLid experiment
    Abreu, Y.
    Amhis, Y.
    Ban, G.
    Beaumont, W.
    Binet, S.
    Bongrand, M.
    Boursette, D.
    Castle, B. C.
    Chanal, H.
    Clark, K.
    Coupe, B.
    Crochet, P.
    Cussans, D.
    De Roeck, A.
    Durand, D.
    Fallot, M.
    Ghys, L.
    Giot, L.
    Graves, K.
    Guillon, B.
    Henaff, D.
    Hosseini, B.
    Ihantola, S.
    Jenzer, S.
    Kalcheva, S.
    Kalousis, L. N.
    Labare, M.
    Lehaut, G.
    Manley, S.
    Manzanillas, L.
    Mermans, J.
    Michiels, I
    Monteil, S.
    Moortgat, C.
    Newbold, D.
    Park, J.
    Pestel, V
    Petridis, K.
    Pinera, I
    Popescu, L.
    Ryckbosch, D.
    Ryder, N.
    Saunders, D.
    Schune, M-H
    Settimo, M.
    Simard, L.
    Vacheret, A.
    Vandierendonck, G.
    Van Dyck, S.
    Van Mulders, P.
    [J]. JOURNAL OF INSTRUMENTATION, 2019, 14 (02)
  • [39] Design and quality assurance for solid recovered fuel
    Lorber, Karl E.
    Sarc, Renato
    Aldrian, Alexia
    [J]. WASTE MANAGEMENT & RESEARCH, 2012, 30 (04) : 370 - 380
  • [40] Post-test analysis of electrode-supported solid oxide electrolyser cells
    M. Al Daroukh
    F. Tietz
    D. Sebold
    H. P. Buchkremer
    [J]. Ionics, 2015, 21 : 1039 - 1043