Species-dependent partitioning of C and N stable isotopes between arbuscular mycorrhizal fungi and their C3 and C4 hosts

被引:21
|
作者
Courty, Pierre-Emmanuel [1 ]
Doubkova, Pavia [2 ]
Calabrese, Silvia [1 ]
Niemann, Helge [3 ]
Lehmann, Moritz F. [3 ]
Vosatka, Miroslav [2 ]
Selosse, Marc-Andre [4 ]
机构
[1] Univ Basel, Dept Environm Sci, Zurich Basel Plant Sci Ctr, Bot, Basel, Switzerland
[2] Inst Bot ASCR, Dept Mycorrhizal Symbioses, Pruhonice 25243, Czech Republic
[3] Univ Basel, Dept Environm Sci Aquat & Stable Isotope Biogeoch, Basel, Switzerland
[4] Museum Natl Hist Nat, Dept Systemat & Evolut, ISYEB, UMR 7205,CP 50, F-75005 Paris, France
来源
基金
瑞士国家科学基金会;
关键词
Arbuscular mycorrhizal fungi; Molecular barcoding; Spores; Extraradical mycelium; Fatty acid C16:1 omega 5; Isotopic abundance; DELTA-C-13; VALUES; C-4; PLANTS; CARBON; FRACTIONATION; PATTERNS; DROUGHT; HYPHAE; ECTOMYCORRHIZAL; PHOTOSYNTHESIS; DISCRIMINATION;
D O I
10.1016/j.soilbio.2014.12.005
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Natural C-13 and N-15 abundances of mycorrhizal fungi are increasingly used in ecology but reference data on arbuscular mycorrhizal fungi (AMF) are scarce. In experiments with nine phylogenetically dispersed AMF strains inoculated on leek (C3 plant) and sorghum (C4) in pot cultures, we measured the C-13/C-12 and N-15/N-14 ratios in shoots, roots, AMF spores as well as carbon isotope signature of the C16:1 omega 5 fatty acid (FA), which is diagnostic for AMF. Spore delta C-13 values varied among AMF strains on any given host. They were significantly lower than shoot delta C-13 for sorghum (-2.5 parts per thousand on average) while for leek, no clear C isotope partitioning between spores and host shoots was observed. The FA C16:1 omega 5 fatty acids were more C-13-depleted than spores, without correlation with spore delta C-13 values. For both, sorghum and leek, spore delta N-13 was higher (+1-2 parts per thousand on average) than for shoots. We found no evidence that isotopic partitioning between the partners drives C-13 and N-15 abundances in plant-AMF symbiosis. Mycorrhizal roots displayed relatively high delta C-13 typical for heterotrophic organs, and not a mix between AMF and plant signatures. Interestingly, inoculation slightly decreased shoot delta C-13 on leek but not on sorghum, as compared with non-mycorrhizal plants, suggesting that AMF improved the plant's water status, a parameter affecting the delta C-13 of C3 but not C4 plants. Phylogenetically closer AMF displayed more similar spore delta C-13 and induced similar C-13 and N-15 abundances on leek shoots, but this observation was not confirmed for sorghum. Plant and AMF isotopic abundances hardly correlated with other parameters related to plant development, mineral nutrition or root mycorrhizal colonisation, and these correlations were never consistent between sorghum and leek. Thus, isotopic abundances in plant-AMF symbiosis were rather constrained by each AMF/plant interaction. Nevertheless, our data provide a valuable reference for future investigations of AMF communities and AM symbiosis in situ. (c) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:52 / 61
页数:10
相关论文
共 50 条
  • [31] Metabolic profiles in C3, C3-C4 intermediate, C4-like, and C4 species in the genus Flaveria
    Borghi, Gian Luca
    Arrivault, Stephanie
    Guenther, Manuela
    Medeiros, David Barbosa
    Dell'Aversana, Emilia
    Fusco, Giovanna Marta
    Carillo, Petronia
    Ludwig, Martha
    Fernie, Alisdair R.
    Lunn, John E.
    Stitt, Mark
    JOURNAL OF EXPERIMENTAL BOTANY, 2022, 73 (05) : 1581 - 1601
  • [32] Mechanistic understanding of interspecific interaction between a C4 grass and a C3 legume via arbuscular mycorrhizal fungi, as influenced by soil phosphorus availability using a 13C and 15N dual-labelled organic patch
    Liu, Hongfei
    Wu, Yang
    Xu, Hongwei
    Ai, Zemin
    Zhang, Jiaoyang
    Liu, Guobin
    Xue, Sha
    PLANT JOURNAL, 2021, 108 (01): : 183 - 196
  • [33] ADVANCED CONTROL OF A C3/C4 SPLITTER
    AKERS, J
    KIPPER, JP
    ADVANCES IN INSTRUMENTATION AND CONTROL, VOL 44, PT 1-4, 1989, 44 : 1071 - 1079
  • [34] GENERALIZATIONS OF C3 MODULES AND C4 MODULES
    Zhu, Zhanmin
    MATHEMATICAL REPORTS, 2023, 25 (01): : 187 - 197
  • [35] COMPLEMENT COMPONENTS OF C3 AND C4 IN NIGERIANS
    OLUSI, SO
    MCFARLANE, H
    TROPICAL AND GEOGRAPHICAL MEDICINE, 1975, 27 (03): : 262 - 264
  • [36] The temperature response of C3 and C4 photosynthesis
    Sage, Rowan F.
    Kubien, David S.
    PLANT CELL AND ENVIRONMENT, 2007, 30 (09): : 1086 - 1106
  • [37] FERMENTATION ROUTES TO ...... C3 AND C4 CHEMICALS
    TONG, GE
    CHEMICAL ENGINEERING PROGRESS, 1978, 74 (04) : 70 - 74
  • [38] PEP CARBOXYLASES IN C3 AND C4 PLANTS
    TING, IP
    OSMOND, CB
    PLANT PHYSIOLOGY, 1972, 49 : 58 - &
  • [39] THE PRODUCTIVITY OF C3 AND C4 PLANTS - A REASSESSMENT
    SNAYDON, RW
    FUNCTIONAL ECOLOGY, 1991, 5 (03) : 321 - 330
  • [40] THE REGULATION OF PHOSPHORIBULOKINASE IN C3 AND C4 PLANTS
    Ruffer-Turner, M. E.
    Bradbeer, J. W.
    PLANT PHYSIOLOGY, 1984, 75 : 52 - 52