From Leibniz homology to cyclic homology

被引:4
|
作者
Lodder, JM [1 ]
机构
[1] New Mexico State Univ, Las Cruces, NM 88003 USA
来源
K-THEORY | 2002年 / 27卷 / 04期
关键词
Leibniz homology; Hochschild homology; cyclic homology;
D O I
10.1023/A:1022609319685
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an algebra R over a commutative ring k, a natural homomorphism phi(*):HL*+1 (R) --> HH* (R) from Leibniz to Hochschild homology is constructed that is induced by an antisymmetrization map on the chain level. The map phi(*) is surjective when R = gl(A), A an algebra over a characteristic zero field. If f : A --> B is an algebra homomorophism, the relative groups HL*(gl f)) are studied, where gl(f) :gl(A) --> gl(B) is the induced map on matrices. Letting HC* denote cyclic homology, if f is surjective with nilpotent kernel, there is a natural surjection HL*+1 (gl(f)) --> HC*(f) in the characteristic zero setting.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 50 条