Semantic Systematicity in Connectionist Language Production

被引:0
|
作者
Calvillo, Jesus [1 ,2 ]
Brouwer, Harm [1 ]
Crocker, Matthew W. [1 ]
机构
[1] Saarland Univ, Dept Language Sci & Technol, D-66123 Saarbrucken, Germany
[2] Penn State Univ, Appl Cognit Sci Lab, State Coll, PA 16802 USA
基金
美国国家科学基金会;
关键词
systematicity; compositionality; compositional generalization; deep learning; semantics; neural networks; sentence production; language production; language generation; generalization; REPRESENTATIONS; MODEL;
D O I
10.3390/info12080329
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decades of studies trying to define the extent to which artificial neural networks can exhibit systematicity suggest that systematicity can be achieved by connectionist models but not by default. Here we present a novel connectionist model of sentence production that employs rich situation model representations originally proposed for modeling systematicity in comprehension. The high performance of our model demonstrates that such representations are also well suited to model language production. Furthermore, the model can produce multiple novel sentences for previously unseen situations, including in a different voice (actives vs. passive) and with words in new syntactic roles, thus demonstrating semantic and syntactic generalization and arguably systematicity. Our results provide yet further evidence that such connectionist approaches can achieve systematicity, in production as well as comprehension. We propose our positive results to be a consequence of the regularities of the microworld from which the semantic representations are derived, which provides a sufficient structure from which the neural network can interpret novel inputs.
引用
收藏
页数:24
相关论文
共 50 条