Thermal Failure Propagation in Lithium-Ion Battery Modules with Various Shapes

被引:38
|
作者
Ouyang, Dongxu [1 ]
Liu, Jiahao [2 ]
Chen, Mingyi [3 ]
Weng, Jingwen [4 ]
Wang, Jian [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230022, Anhui, Peoples R China
[2] Shanghai Maritime Univ, Coll Ocean Sci & Engn, Shanghai 201306, Peoples R China
[3] Jiangsu Univ, Sch Environm & Safety Engn, Zhenjiang 212013, Peoples R China
[4] Fuzhou Univ, Sch Environm & Resources, Fuzhou 350116, Fujian, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 08期
基金
国家重点研发计划;
关键词
battery module; thermal failure propagation; discharging treatment; module shape; surface temperature; mass loss; PHASE-CHANGE MATERIAL; RUNAWAY PROPAGATION; MANAGEMENT-SYSTEM; PACK; HAZARDS; PERFORMANCE; COMPOSITE; CELLS;
D O I
10.3390/app8081263
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal failure propagation is one of the most severe challenges for battery modules and it usually aggravates the thermal hazards, further resulting in serious accidents. This work conducted two groups of experiments to investigate the influence of discharging treatment and module shape on the thermal failure propagation of battery modules, where the triangle module, rectangle module, parallelogram module, line module, hexagon module, and square module were researched. Based on the results, it can be found that an evident domino effect existed on the thermal failure propagation of battery modules. Namely, the failure propagation process consisted of several phases and the number of phases depended on the shape of the module. Besides, it is indicated that discharging treatment on a battery module when it was in a high-temperature environment would aggravate its thermal failure propagation by bringing an earlier thermal failure, a quicker failure propagation, and a larger mass loss. Combining the results of safety and space utilization, it is revealed that the triangular module may be the best choice of battery module due to its smaller failure propagation speed and higher space utilization.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Electrochemical-Thermal Evaluation of an Integrated Thermal Management System for Lithium-Ion Battery Modules
    Bahiraei, Farid
    Ghalkhani, Maryam
    Fartaj, Amir
    Nazri, Gholam-Abbas
    ADVANCED THEORY AND SIMULATIONS, 2018, 1 (06)
  • [32] Uncertainty assessment method for thermal runaway propagation of lithium-ion battery pack
    Zhang, Wencan
    Yuan, Jiangfeng
    Huang, Jianfeng
    Xie, Yi
    APPLIED THERMAL ENGINEERING, 2024, 238
  • [33] Experimental Investigation on Thermal Runaway Propagation in Lithium-Ion Battery Cell Stack
    Hoelle, Sebastian
    Haberl, Simon
    Rheinfeld, Alexander
    Osswald, Patrick
    Zimmermann, Sascha
    Hinrichsen, Olaf
    2022 IEEE/AIAA TRANSPORTATION ELECTRIFICATION CONFERENCE AND ELECTRIC AIRCRAFT TECHNOLOGIES SYMPOSIUM (ITEC+EATS 2022), 2022, : 1174 - 1179
  • [34] Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs
    Wang, Zhirong
    He, Tengfei
    Bian, Huan
    Jiang, Fengwei
    Yang, Yun
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [35] Effects of heating position on the thermal runaway propagation of a lithium-ion battery module in a battery enclosure
    Li, Zijian
    Zhang, Peihong
    Shang, Rongxue
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [36] Safety & Reliability Capabilities of Lithium-Ion Battery Systems for Subsea Applications That Use Autonomous Lithium-Ion Battery Modules
    White, David A.
    Adams, Leon
    2013 OCEANS - SAN DIEGO, 2013,
  • [37] Analysis of polarization and thermal characteristics in lithium-ion battery with various electrode thicknesses
    Zhao, Daan
    Chen, Wei
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [38] Thermal behaviour and thermal runaway propagation in lithium-ion battery systems-A critical review
    Mallick, Soumyoraj
    Gayen, Debabrata
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [39] An experimental-based Domino prediction model of thermal runaway propagation in 18,650 lithium-ion battery modules
    Zhai, Hongju
    Li, Huang
    Ping, Ping
    Huang, Zonghou
    Wang, Qingsong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 181
  • [40] Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge
    Zhang, Wencan
    Ouyang, Nan
    Yin, Xiuxing
    Li, Xingyao
    Wu, Weixiong
    Huang, Liansheng
    APPLIED ENERGY, 2022, 323