Zero-sum subsets in vector spaces over finite fields

被引:0
|
作者
Pohoata, Cosmin [1 ]
Zakharov, Dmitriy [2 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Moscow Inst Phys & Technol, Lab Combinatorial & Geometr Struct, Dolgoprudnyi, Moscow Oblast, Russia
关键词
zero sum; Olson constant; finite fields; polynomial method;
D O I
10.2140/ant.2022.16.1407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Olson constant OL(F-p(d)) represents the minimum positive integer t with the property that every subset A subset of F-p(d) of cardinality t contains a nonempty subset with vanishing sum. The problem of estimating OL(F-p(d)) is one of the oldest questions in additive combinatorics, with a long and interesting history even for the case d = 1. We prove that for any fixed d >= 2 and epsilon > 0, the Olson constant of F-p(d) satisfies the inequality OL(F-p(d)) <= (d - 1+ epsilon) p for all sufficiently large primes p. This settles a conjecture of Hoi Nguyen and Van Vu.
引用
收藏
页码:1407 / 1421
页数:15
相关论文
共 50 条
  • [31] QUANTIZATION OF SYMPLECTIC VECTOR SPACES OVER FINITE FIELDS
    Gurevich, Shamgar
    Hadani, Ronny
    JOURNAL OF SYMPLECTIC GEOMETRY, 2009, 7 (04) : 475 - 502
  • [32] Distinct spreads in vector spaces over finite fields
    Lund, Ben
    Thang Pham
    Vinh, Le Anh
    DISCRETE APPLIED MATHEMATICS, 2018, 239 : 154 - 158
  • [33] On the structure of long zero-sum free sequences and n-zero-sum free sequences over finite cyclic groups
    Gao, Weidong
    Li, Yuanlin
    Yuan, Pingzhi
    Zhuang, Jujuan
    ARCHIV DER MATHEMATIK, 2015, 105 (04) : 361 - 370
  • [34] On the structure of long zero-sum free sequences and n-zero-sum free sequences over finite cyclic groups
    Weidong Gao
    Yuanlin Li
    Pingzhi Yuan
    Jujuan Zhuang
    Archiv der Mathematik, 2015, 105 : 361 - 370
  • [35] MINIMAL ZERO-SUM SEQUENCES OF LENGTH FOUR OVER FINITE CYCLIC GROUPS II
    Li, Yuanlin
    Peng, Jiangtao
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (04) : 845 - 866
  • [36] MINIMAL ZERO-SUM SEQUENCES IN FINITE CYCLIC GROUPS
    Zhuang, Jujuan
    Yuan, Pingzhi
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (03): : 1007 - 1015
  • [37] Two zero-sum invariants on finite abelian groups
    Fan, Yushuang
    Gao, Weidong
    Wang, Linlin
    Zhong, Qinghai
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1331 - 1337
  • [38] ON THE UNSPLITTABLE MINIMAL ZERO-SUM SEQUENCES OVER FINITE CYCLIC GROUPS OF PRIME ORDER
    Peng, Jiangtao
    Sun, Fang
    ARS COMBINATORIA, 2017, 130 : 103 - 118
  • [39] An inverse problem about minimal zero-sum sequences over finite cyclic groups
    Savchev, Svetoslav
    Chen, Fang
    JOURNAL OF NUMBER THEORY, 2017, 177 : 381 - 427
  • [40] Zero-sum problems in finite abelian groups: A survey
    Gao, Weidong
    Geroldinger, Alfred
    EXPOSITIONES MATHEMATICAE, 2006, 24 (04) : 337 - 369