Quantum groupoids and deformation quantization

被引:15
|
作者
Xu, P [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
10.1016/S0764-4442(97)82982-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this Note is to unify quantum groups and star-products under a general umbrella: quantum groupoids. It is shown that a quantum groupoid naturally gives rise to a Lie bialgebroid as a classical limit. The converse question, i.e., the quantization problem, is posed. In particular, any regular triangular Lie bialgebroid is shown quantizable. For the Lie bialgebroid of a Poisson manifold, its quantization is equivalent to a star-product.
引用
收藏
页码:289 / 294
页数:6
相关论文
共 50 条
  • [1] Tangential deformation quantization and polarized symplectic groupoids
    Weinstein, A
    [J]. DEFORMATION THEORY AND SYMPLECTIC GEOMETRY: PROCEEDINGS OF THE ASCONA MEETING, JUNE 1996, 1997, 20 : 301 - 314
  • [2] Deformation quantization of pseudo-symplectic (Poisson) groupoids
    Xiang Tang
    [J]. Geometric & Functional Analysis GAFA, 2006, 16 : 731 - 766
  • [3] Deformation quantization of pseudo-symplectic (Poisson) groupoids
    Tang, Xiang
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2006, 16 (03) : 731 - 766
  • [4] Deformation quantization using groupoids. The case of toric manifolds
    Cadet, Frederic
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 641 - 656
  • [5] Deformation quantization of geometric quantum mechanics
    García-Compeán, H
    Plebanski, JF
    Przanowski, M
    Turrubiates, FJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (19): : 4301 - 4319
  • [6] Deformation quantization in the teaching of quantum mechanics
    Hirshfeld, AC
    Henselder, P
    [J]. AMERICAN JOURNAL OF PHYSICS, 2002, 70 (05) : 537 - 547
  • [7] Deformation quantization of noncommutative quantum mechanics
    Jing, SC
    Zuo, F
    Heng, TH
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10):
  • [8] Polymer quantum mechanics as a deformation quantization
    Berra-Montie, Jasel
    Molgadol, Alberto
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (02)
  • [9] EXTENSIONS OF SYMPLECTIC GROUPOIDS AND QUANTIZATION
    WEINSTEIN, A
    XU, P
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 417 : 159 - 189
  • [10] Deformation quantization and the tomographic representation of quantum fields
    Berra-Montiel, Jasel
    Cartas-Fuentevilla, Roberto
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (14)