Deformation quantization of pseudo-symplectic (Poisson) groupoids

被引:26
|
作者
Tang, Xiang [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
groupoid; Poisson structure; quantization; formality;
D O I
10.1007/s00039-006-0567-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new kind of groupoid-a pseudo-etale groupoid, which provides many interesting examples of noncommutative Poisson algebras as defined by Block, Getzler, and Xu. Following the idea that symplectic and Poisson geometries are the semiclassical limits of the corresponding quantum geometries, we quantize these noncommutative Poisson algebras in the framework of deformation quantization.
引用
收藏
页码:731 / 766
页数:36
相关论文
共 50 条
  • [1] Deformation quantization of pseudo-symplectic (Poisson) groupoids
    Xiang Tang
    [J]. Geometric & Functional Analysis GAFA, 2006, 16 : 731 - 766
  • [2] Tangential deformation quantization and polarized symplectic groupoids
    Weinstein, A
    [J]. DEFORMATION THEORY AND SYMPLECTIC GEOMETRY: PROCEEDINGS OF THE ASCONA MEETING, JUNE 1996, 1997, 20 : 301 - 314
  • [3] Symplectic and Poisson derived geometry and deformation quantization
    Pantev, Tony
    Vezzosi, Gabriele
    [J]. ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 : 405 - 457
  • [4] On symplectic double groupoids and the duality of Poisson groupoids
    Mackenzie, KCH
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (04) : 435 - 456
  • [5] EXTENSIONS OF SYMPLECTIC GROUPOIDS AND QUANTIZATION
    WEINSTEIN, A
    XU, P
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 417 : 159 - 189
  • [6] Symplectic groupoids and Poisson electrodynamics
    Kupriyanov, Vladislav G.
    Sharapov, Alexey A.
    Szabo, Richard J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [7] SYMPLECTIC GROUPOIDS AND POISSON MANIFOLDS
    WEINSTEIN, A
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 16 (01): : 101 - 104
  • [8] Symplectic groupoids for Poisson integrators
    Cosserat, Oscar
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186
  • [9] Carter Subgroups of Pseudo-symplectic Groups
    高有
    李文戈
    高永馨
    [J]. Communications in Mathematical Research, 2000, (04) : 469 - 474
  • [10] Pseudo-symplectic Runge-Kutta methods
    Aubry, A
    Chartier, P
    [J]. BIT, 1998, 38 (03): : 439 - 461