Multiparticle interference in electronic Mach-Zehnder interferometers

被引:32
|
作者
Kovrizhin, D. L. [1 ,2 ]
Chalker, J. T. [1 ]
机构
[1] Univ Oxford, Oxford OX1 3NP, England
[2] RRC Kurchatov Inst, Moscow 123182, Russia
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 15期
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM HALL STATES; MANY-FERMION SYSTEM; GAUSSIAN SHOT-NOISE; EXCITATIONS;
D O I
10.1103/PhysRevB.81.155318
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study theoretically electronic Mach-Zehnder interferometers built from integer quantum-Hall-edge states, showing that the results of recent experiments can be understood in terms of multiparticle interference effects. These experiments probe the visibility of Aharonov-Bohm (AB) oscillations in differential conductance as an interferometer is driven out of equilibrium by an applied bias, finding a lobe pattern in visibility as a function of voltage. We calculate the dependence on voltage of the visibility and the phase of AB oscillations at zero temperature, taking into account long-range interactions between electrons in the same edge for interferometers operating at a filling fraction nu = 1. We obtain an exact solution via bosonization for models in which electrons interact only when they are inside the interferometer. This solution is nonperturbative in the tunneling probabilities at quantum-point contacts. The results match observations in considerable detail provided the transparency of the incoming contact is close to one-half: the variation in visibility with bias voltage consists of a series of lobes of decreasing amplitude and the phase of the AB fringes is practically constant inside the lobes but jumps by pi at the minima of the visibility. We discuss in addition the consequences of approximations made in other recent treatments of this problem. We also formulate perturbation theory in the interaction strength and use this to study the importance of interactions that are not internal to the interferometer.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Integrated optical Mach-Zehnder interferometers as simazine immunoprobes
    Drapp, B.
    Piehler, J.
    Brecht, A.
    Gauglitz, G.
    Luff, B.J.
    Wilkinson, J.S.
    Ingenhoff, J.
    Sensors and Actuators, B: Chemical, 1997, B39 (1 -3 pt 2) : 277 - 282
  • [32] Postselective measurement of the electronic entanglement in the system of two Mach-Zehnder interferometers with coulomb interaction
    Vyshnevyy, A. A.
    Lesovik, G. B.
    JETP LETTERS, 2013, 98 (08) : 507 - 513
  • [33] Integrated optical Mach-Zehnder interferometers as simazine immunoprobes
    Drapp, B
    Piehler, J
    Brecht, A
    Gauglitz, G
    Luff, BJ
    Wilkinson, JS
    Ingenhoff, J
    SENSORS AND ACTUATORS B-CHEMICAL, 1997, 39 (1-3) : 277 - 282
  • [34] Active Modular Microsystems Based on Mach-Zehnder Interferometers
    Schuele, Sven
    Hengsbach, Stefan
    Hollenbach, Uwe
    Li, Jingshi
    Leuthold, Juerg
    Mohr, Juergen
    MICRO-OPTICS 2010, 2010, 7716
  • [35] Phase engineering for ring enhanced Mach-Zehnder interferometers
    Darmawan, S
    Landobasa, YM
    Chin, MK
    OPTICS EXPRESS, 2005, 13 (12): : 4580 - 4588
  • [36] Postselective measurement of the electronic entanglement in the system of two Mach-Zehnder interferometers with coulomb interaction
    A. A. Vishnevyy
    G. B. Lesovik
    JETP Letters, 2013, 98 : 507 - 513
  • [37] Electronic Mach-Zehnder quantum eraser
    Kang, Kicheon
    PHYSICAL REVIEW B, 2007, 75 (12):
  • [38] Two-dimensional photonic crystal Mach-Zehnder interferometers
    Shih, MH
    Kim, WJ
    Kuang, W
    Cao, JR
    Yukawa, H
    Choi, SJ
    O'Brien, JD
    Dapkus, PD
    Marshall, WK
    APPLIED PHYSICS LETTERS, 2004, 84 (04) : 460 - 462
  • [39] Three-dimensional reconstruction of a microjet with a Mach disk by Mach-Zehnder interferometers
    Sugawara, S.
    Nakao, S.
    Miyazato, Y.
    Ishino, Y.
    Miki, K.
    JOURNAL OF FLUID MECHANICS, 2020, 893
  • [40] Fringe contrast in three grating Mach-Zehnder atomic interferometers
    C. Champenois
    M. Büchner
    J. Vigué
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 1999, 5 : 363 - 374