Long chaotic transients in complex networks

被引:68
|
作者
Zumdieck, A
Timme, M
Geisel, T
Wolf, F
机构
[1] Univ Gottingen, Fak Phys, D-37073 Gottingen, Germany
[2] Max Planck Inst Stromungsforsch, D-37073 Gottingen, Germany
[3] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.93.244103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that long chaotic transients dominate the dynamics of randomly diluted networks of pulse-coupled oscillators. This contrasts with the rapid convergence towards limit cycle attractors found in networks of globally coupled units. The lengths of the transients strongly depend on the network connectivity and vary by several orders of magnitude, with maximum transient lengths at intermediate connectivities. The dynamics of the transients exhibit a novel form of robust synchronization. An approximation to the largest Lyapunov exponent characterizing the chaotic nature of the transient dynamics is calculated analytically.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] CHAOTIC SYNCHRONIZATION OF HYBRID STATE ON COMPLEX NETWORKS
    Nian, Fuzhong
    Wang, Xingyuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2010, 21 (04): : 457 - 469
  • [22] Extraordinarily superpersistent chaotic transients
    Do, Y
    Lai, YC
    EUROPHYSICS LETTERS, 2004, 67 (06): : 914 - 920
  • [23] SUPER PERSISTENT CHAOTIC TRANSIENTS
    GREBOGI, C
    OTT, E
    YORKE, JA
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 : 341 - 372
  • [24] Long range action in networks of chaotic elements
    Blank, M
    Bunimovich, L
    NONLINEARITY, 2006, 19 (02) : 329 - 344
  • [25] Are the complex distributed genetic networks inherently oscillatory and chaotic?
    Zhdanov, V. P.
    JETP LETTERS, 2011, 93 (01) : 41 - 45
  • [26] Synchronizability of chaotic logistic maps in delayed complex networks
    M. Ponce C.
    C. Masoller
    Arturo C. Martí
    The European Physical Journal B, 2009, 67 : 83 - 93
  • [27] The existence of generalized synchronization of chaotic systems in complex networks
    Hu, Aihua
    Xu, Zhenyuan
    Guo, Liuxiao
    CHAOS, 2010, 20 (01)
  • [28] Synchronization of fractional chaotic complex networks with distributed delays
    Jian-Bing Hu
    Guo-Ping Lu
    Ling-Dong Zhao
    Nonlinear Dynamics, 2016, 83 : 1101 - 1108
  • [29] Explosive synchronization of complex networks with different chaotic oscillators
    赵军产
    Chinese Physics B, 2013, 22 (06) : 261 - 265
  • [30] Explosive synchronization of complex networks with different chaotic oscillators
    Zhao Jun-Chan
    CHINESE PHYSICS B, 2013, 22 (06)