Long chaotic transients in complex networks

被引:68
|
作者
Zumdieck, A
Timme, M
Geisel, T
Wolf, F
机构
[1] Univ Gottingen, Fak Phys, D-37073 Gottingen, Germany
[2] Max Planck Inst Stromungsforsch, D-37073 Gottingen, Germany
[3] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.93.244103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that long chaotic transients dominate the dynamics of randomly diluted networks of pulse-coupled oscillators. This contrasts with the rapid convergence towards limit cycle attractors found in networks of globally coupled units. The lengths of the transients strongly depend on the network connectivity and vary by several orders of magnitude, with maximum transient lengths at intermediate connectivities. The dynamics of the transients exhibit a novel form of robust synchronization. An approximation to the largest Lyapunov exponent characterizing the chaotic nature of the transient dynamics is calculated analytically.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Multiple attractors, long chaotic transients, and failure in small-world networks of excitable neurons
    Riecke, Hermann
    Roxin, Alex
    Madruga, Santiago
    Solla, Sara A.
    CHAOS, 2007, 17 (02)
  • [2] TRANSIENTS VERSUS ATTRACTORS IN COMPLEX NETWORKS
    Muezzinoglu, Mehmet K.
    Tristan, Irma
    Huerta, Ramon
    Afraimovich, Valentin S.
    Rabinovich, Mikhail I.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (06): : 1653 - 1675
  • [3] Long transients dynamics in biochemical networks
    Bignone, FA
    Livi, R
    Propato, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (01): : 91 - 102
  • [4] Long transients dynamics in biochemical networks
    Bignone, F. A.
    Livi, R.
    Propato, M.
    Nuovo Cimento Della Societa Italiana Di Fisica. D, Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 20 (01):
  • [5] Origin of chaotic transients in excitatory pulse-coupled networks
    Zou, Hai-Lin
    Li, Menghui
    Lai, Choy-Heng
    Lai, Ying-Cheng
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [6] Prediction of complex oscillations in the dynamics of coupled chaotic systems using transients
    Pavlova, O. N.
    Pavlov, A. N.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 545
  • [7] REPELLERS, SEMI-ATTRACTORS, AND LONG-LIVED CHAOTIC TRANSIENTS
    KANTZ, H
    GRASSBERGER, P
    PHYSICA D, 1985, 17 (01): : 75 - 86
  • [8] JUMPS TO RESONANCE - LONG CHAOTIC TRANSIENTS, UNPREDICTABLE OUTCOME, AND THE PROBABILITY OF RESTABILIZATION
    SOLIMAN, MS
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (03): : 669 - 676
  • [9] Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons
    Zillmer, Ruediger
    Brunel, Nicolas
    Hansel, David
    PHYSICAL REVIEW E, 2009, 79 (03):
  • [10] LONG-LASTING TRANSIENTS OF ACTIVATION IN NEURAL NETWORKS
    VANOOYEN, A
    VANPELT, J
    CORNER, MA
    DASILVA, FHL
    NEUROCOMPUTING, 1992, 4 (1-2) : 75 - 87