Satisfiability Modulo Bounded Checking

被引:3
|
作者
Cruanes, Simon [1 ]
机构
[1] Univ Lorraine, CNRS, INRIA, LORIA, F-54000 Nancy, France
来源
AUTOMATED DEDUCTION - CADE 26 | 2017年 / 10395卷
关键词
D O I
10.1007/978-3-319-63046-5_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a new approach to find models for a computational higher-order logic with datatypes. The goal is to find counter-examples for conjectures stated in proof assistants. The technique builds on narrowing [14] but relies on a tight integration with a SAT solver to analyze conflicts precisely, eliminate sets of choices that lead to failures, and sometimes prove unsatisfiability. The architecture is reminiscent of that of an SMT solver. We present the rules of the calculus, an implementation, and some promising experimental results.
引用
收藏
页码:114 / 129
页数:16
相关论文
共 50 条
  • [41] Satisfiability modulo theory and binary puzzle
    Utomo, Putranto
    INTERNATIONAL CONFERENCE ON MATHEMATICS: EDUCATION, THEORY AND APPLICATION, 2017, 855
  • [42] Personnel Scheduling as Satisfiability Modulo Theories
    Erkinger, Christoph
    Musliu, Nysret
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 614 - 621
  • [43] A progressive simplifier for satisfiability modulo theories
    Sheini, Hossein M.
    Sakallah, Karem A.
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2006, PROCEEDINGS, 2006, 4121 : 184 - 197
  • [44] Satisfiability Checking: Theory and Applications
    Abraham, Erika
    Kremer, Gereon
    SOFTWARE ENGINEERING AND FORMAL METHODS: 14TH INTERNATIONAL CONFERENCE, SEFM 2016, 2016, 9763 : 9 - 23
  • [45] Checking satisfiability of a conjunction of BDDs
    Damiano, R
    Kukula, J
    40TH DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2003, 2003, : 818 - 823
  • [46] Symbolic computation and satisfiability checking
    Davenport, James H.
    England, Matthew
    Griggio, Alberto
    Sturm, Thomas
    Tinelli, Cesare
    JOURNAL OF SYMBOLIC COMPUTATION, 2020, 100 : 1 - 10
  • [47] Satisfiability Checking and Symbolic Computation
    Abraham, E.
    Abbott, J.
    Becker, B.
    Bigatti, A. M.
    Brain, M.
    Buchberger, B.
    Cimatti, A.
    Davenport, J. H.
    England, M.
    Fontaine, P.
    Forrest, S.
    Griggio, A.
    Kroening, D.
    Seiler, W. M.
    Sturm, T.
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2016, 50 (04): : 145 - 147
  • [48] Satisfiability checking for PC(ID)
    Mariën, M
    Mitra, R
    Denecker, M
    Bruynooghe, M
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, 2005, 3835 : 565 - 579
  • [49] LTL Satisfiability Checking Revisited
    Li, Jianwen
    Zhang, Lijun
    Pu, Geguang
    Vardi, Moshe Y.
    He, Jifeng
    2013 20TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING (TIME), 2013, : 91 - 98
  • [50] Model checking with Boolean Satisfiability
    Marques-Silva, Joao
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2008, 63 (1-3): : 3 - 16