AN EFFICIENT COLLOCATION TECHNIQUE FOR SOLVING GENERALIZED FOKKER-PLANCK TYPE EQUATIONS WITH VARIABLE COEFFICIENTS

被引:0
|
作者
Bhrawy, A. H. [1 ,2 ]
Ahmed, Engy A. [2 ]
Baleanu, D. [3 ,4 ,5 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[3] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21413, Saudi Arabia
[4] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, Ankara, Turkey
[5] Inst Space Sci, Magurele, Romania
关键词
time-dependent Fokker-Plank equation; generalized Fokker-Plank equation; real Newell-Whitehead equation; collocation method; implicit Runge-Kutta method; SPECTRAL GALERKIN METHOD; BOUNDARY-VALUE-PROBLEMS; NUMERICAL-SOLUTION; INTEGRODIFFERENTIAL EQUATIONS; DIFFERENTIAL-EQUATIONS; SYSTEMS; MATRIX; KIND;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper proposes an efficient numerical integration process for the generalized Fokker-Planck equation with variable coefficients. For spatial discretization the Jacobi-Gauss-Lobatto collocation (J-GL-C) method is implemented in which the Jacobi-Gauss-Lobatto points are used as collocation nodes for spatial derivatives. This approach has the advantage of obtaining the solution in terms of the Jacobi parameters alpha and beta. Using the above technique, the problem is reduced to the solution of a system of ordinary differential equations in tithe. This system can be also solved by standard numerical techniques. Our results demonstrate that the proposed method is a powerful algorithm for solving nonlinear partial differential equations.
引用
收藏
页码:322 / 330
页数:9
相关论文
共 50 条
  • [21] Numerical solution of the Fokker-Planck equation with variable coefficients
    Kim, Arnold D.
    Tranquilli, Paul
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2008, 109 (05): : 727 - 740
  • [22] Numerical solutions for solving time fractional Fokker-Planck equations based on spectral collocation methods
    Yang, Yin
    Huang, Yunqing
    Zhou, Yong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 389 - 404
  • [23] A two-dimensional Chebyshev wavelets approach for solving the Fokker-Planck equations of time and space fractional derivatives type with variable coefficients
    Xie, Jiaquan
    Yao, Zhibin
    Gui, Hailian
    Zhao, Fuqiang
    Li, Dongyang
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 : 197 - 208
  • [24] A deep learning method for solving Fokker-Planck equations
    Zhai, Jiayu
    Dobson, Matthew
    Li, Yao
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145, 2021, 145 : 568 - 597
  • [25] Efficient projection method for a system of differential equations of Fokker-Planck type
    Noarov, Alexander I.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2019, 34 (03) : 133 - 142
  • [26] SINGULARITY OF THE SOLUTIONS OF SOME GENERALIZED FOKKER-PLANCK EQUATIONS
    KREE, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (10): : 291 - 294
  • [27] Multivariate nonlinear Fokker-Planck equations and generalized thermostatistics
    Frank, TD
    Daffertshofer, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 292 (1-4) : 392 - 410
  • [28] An efficient iterative method for solving the Fokker-Planck equation
    Al-Jawary, M. A.
    RESULTS IN PHYSICS, 2016, 6 : 985 - 991
  • [29] NONLINEAR FOKKER-PLANCK EQUATIONS WITH TIME-DEPENDENT COEFFICIENTS
    Barbu, Viorelc
    Rockner, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (01) : 1 - 18
  • [30] Efficient Solution of Fokker-Planck Equations in Two Dimensions
    Mcfarland, Donald Michael
    Ye, Fei
    Zong, Chao
    Zhu, Rui
    Han, Tao
    Fu, Hangyu
    Bergman, Lawrence A.
    Lu, Huancai
    MATHEMATICS, 2025, 13 (03)