Lattice Boltzmann model for the low-Mach number variable-density flow

被引:0
|
作者
Yuan, Xuyao [1 ]
Wei, Wei [1 ]
Fang, Zhenlong [1 ,2 ]
Chen, Yong [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430063, Peoples R China
[2] Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya 572025, Peoples R China
基金
中国国家自然科学基金;
关键词
ASYMPTOTIC ANALYSIS; BGK MODEL;
D O I
10.1063/5.0095518
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, we present a pressure-based double-population lattice Boltzmann model for the low-Mach number variable-density flow. The model is simple, stable, and purely local. The asymptotic analysis of the model indicates that it recovers the continuity, momentum, and energy equations describing the low-Mach number variable-density flow. The comparisons between the simulation results using the proposed model and the numerical data reported by previous studies demonstrate that the model can accurately predict the drag coefficient and the Nusselt number for a sphere and a prolate ellipsoid in low-Mach number variable-density flow over a wide range of Reynolds numbers. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A Weighted Splitting Approach for Low-Mach Number Flows
    Iampietro, David
    Daude, Frederic
    Galon, Pascal
    Herard, Jean-Marc
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-HYPERBOLIC, ELLIPTIC AND PARABOLIC PROBLEMS, 2017, 200 : 3 - 11
  • [32] A low-Mach number model for time-harmonic acoustics in arbitrary flows
    Bonnet-Ben Dhia, A. S.
    Mercier, J. F.
    Millot, F.
    Pernet, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (06) : 1868 - 1875
  • [33] A collocated grid, projection method for time-accurate calculation of low-Mach number variable density flows in general curvilinear coordinates
    Kooshkbaghi, Mahdi
    Lessani, Bamdad
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (03) : 301 - 319
  • [34] Lattice Boltzmann method with nonreflective boundary conditions for low Mach number combustion
    Wang, Zhen
    Lei, Timan
    Luo, Kai Hong
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (04) : 5365 - 5373
  • [35] Verification of a low Mach variable-density Navier-Stokes solver for turbulent combustion
    Mullyadzhanov, R.
    Palkin, E.
    Niceno, B.
    Vervisch, L.
    Hanjalic, K.
    ALL RUSSIAN CONFERENCE WITH THE SCHOOL FOR YOUNG SCIENTISTS THERMOPHYSICS AND PHYSICAL HYDRODYNAMICS - 2016, 2016, 754 (1-10):
  • [36] Variable-density flow in porous media
    Dentz, M.
    Tartakovsky, D. M.
    Abarca, E.
    Guadagnini, A.
    Sanchez-Vila, X.
    Carrera, J.
    JOURNAL OF FLUID MECHANICS, 2006, 561 (209-235) : 209 - 235
  • [37] ON THE GENERATION OF INSTABILITIES IN VARIABLE-DENSITY FLOW
    SCHINCARIOL, RA
    SCHWARTZ, FW
    MENDOZA, CA
    WATER RESOURCES RESEARCH, 1994, 30 (04) : 913 - 927
  • [38] Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows
    Morinishi, Yohei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (02) : 276 - 300
  • [39] An adaptive projection method for unsteady, low-Mach number combustion
    Pember, RB
    Howell, LH
    Bell, JB
    Colella, P
    Crutchfield, WY
    Fiveland, WA
    Jessee, JP
    COMBUSTION SCIENCE AND TECHNOLOGY, 1998, 140 (1-6) : 123 - +
  • [40] A low-Mach number method for the numerical simulation of complex flows
    Salinas-Vazquez, M.
    Vicente, W.
    Barrios, E.
    Martinez, E.
    Palacio, A.
    Rodriguez, A.
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (22) : 9132 - 9146