elliptic curve;
ideal class group;
Bloch-Kato?s Selmer group;
D O I:
10.3836/tjm/1502179361
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For an elliptic curve E over Q, putting K = Q(E[p]) which is the p-th division field of E for an odd prime p, we study the ideal class group ClK of K as a Gal(K/Q)-module. More precisely, for any j with 1 5 j 5 p - 2, we give a condition that ClK circle times Fp has the symmetric power Symj E[p] of E[p] as its quotient Gal(K/Q)-module, in terms of Bloch-Kato's Tate-Shafarevich group of Symj VpE. Here VpE denotes the rational p-adic Tate module of E. This is a partial generalization of a result of Prasad and Shekhar for the case j = 1.
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R ChinaUniv Ottawa, Dept Math & Stat, 150 Louis Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
Lim, Meng Fai
Mueller, Katharina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Laval, Dept Math & Stat, Pavill Alexandre Vachon,1045 Ave Med, Quebec City, PQ G1V 0A6, CanadaUniv Ottawa, Dept Math & Stat, 150 Louis Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
机构:
Univ Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, FranceUniv Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France
Harari, David
Szamuely, Tamas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, ItalyUniv Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France