Optical detection of gadolinium(III) ions via quantum dot aggregation

被引:9
|
作者
Quinn, Steven D. [1 ,2 ]
Magennis, Steven W. [1 ]
机构
[1] Univ Glasgow, Sch Chem, WestCHEM, Univ Ave, Glasgow G12 8QQ, Lanark, Scotland
[2] MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
RSC ADVANCES | 2017年 / 7卷 / 40期
基金
英国生物技术与生命科学研究理事会;
关键词
FLUORESCENCE CORRELATION SPECTROSCOPY; MRI CONTRAST AGENTS; IN-VIVO; BLINKING; WATER; NANOCRYSTALS; CDSE; CDTE;
D O I
10.1039/c7ra03969g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A rapid, sensitive and selective optical readout of the presence of gadolinium(III) ions would have a wide range of applications for clinical and environmental monitoring. We demonstrate that water-soluble CdTe quantum dots (QDs) are induced to aggregate by Gd3+ ions in aqueous solution. By using a combination of photoluminescence spectroscopy, dynamic light scattering and fluorescence correlation spectroscopy (FCS) to monitor quantum dot aggregation kinetics, we correlate the efficiency of the self-quenching process with the degree of aggregation across a broad range of conditions, including different sizes of QDs. We attribute the aggregation to metal binding to the QD's surface ligands and the quenching to intra-aggregate energy transfer between QDs. When the strategy was applied to additional trivalent ions, the aggregation rate varied according to the particular trivalent metal ion used, suggesting that the selectivity can be enhanced and controlled by appropriate design of the capping ligands and solution conditions.
引用
收藏
页码:24730 / 24735
页数:6
相关论文
共 50 条
  • [41] Phase-dependent optical bistability in the quantum dot nanostructure molecules via inter-dot tunneling
    Vafafard, A.
    Goharshenasan, S.
    Nozari, N.
    Mortezapour, A.
    Mahmoudi, M.
    JOURNAL OF LUMINESCENCE, 2013, 134 : 900 - 905
  • [42] The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states
    Wu, Jiang
    Passmore, Brandon
    Manasreh, M. O.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (08)
  • [43] Quantum dynamics of optical phonons generated by optical excitation of a quantum dot
    Wigger, Daniel
    Gehring, Helge
    Axt, V. Martin
    Reiter, Doris E.
    Kuhn, Tilmann
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2016, 15 (04) : 1158 - 1169
  • [44] Applications of quantum dot to optical devices
    Ishikawa, H
    SELF-ASSEMBLED INGAAS/GAAS QUANTUM DOTS, 1999, 60 : 287 - 323
  • [45] Optical transitions in parabolic quantum dot
    E. M. Kazaryan
    M. S. Atoyan
    H. A. Sarkisyan
    Physics of Atomic Nuclei, 2005, 68 : 1726 - 1729
  • [46] Optical linewidths in an individual quantum dot
    Li, XQ
    Arakawa, Y
    PHYSICAL REVIEW B, 1999, 60 (03): : 1915 - 1920
  • [47] Optical Trapping of a Colloidal Quantum Dot
    Huang, I-Chun
    Jensen, Russel A.
    Chen, Ou
    Choy, Jennifer
    Bischof, Thomas S.
    Bawendi, Moungi
    Loncar, Marko
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [48] Synthesis of Carbon Quantum Dots from Jujubes for Detection of Iron(III) Ions
    Kim, Kwonbeen
    Kim, Jongsung
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (02) : 1320 - 1322
  • [49] Optical absorptions of a biexciton quantum dot
    Xie, Wenfang
    PHYSICA B-CONDENSED MATTER, 2012, 407 (12) : 2329 - 2333
  • [50] A multiexcitonic quantum dot in an optical microcavity
    Vinck, Herbert
    Rodriguez, Boris A.
    Gonzalez, Augusto
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 35 (01): : 99 - 102