Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

被引:8
|
作者
Wang, J. [1 ,2 ]
Zhao, Z. Q. [2 ]
He, W. H. [2 ]
Cao, L. H. [3 ]
Dong, K. G. [2 ]
Wu, Y. C. [2 ]
Zhu, B. [2 ]
Zhang, T. K. [2 ]
Zhang, B. [2 ]
Zhang, Z. M. [2 ]
Gu, Y. Q. [2 ]
机构
[1] Fudan Univ, Dept Phys, Shanghai 210433, Peoples R China
[2] Sci & Technol Plasma Phys Lab, Mianyang 621900, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
PLASMA;
D O I
10.1063/1.4897319
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] QUASI-STATIC FIELD CALCULATIONS IN A LAYERED, ANISOTROPIC STRUCTURE
    QUAK, D
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1991, 101 (1-3) : 191 - 192
  • [42] ELECTRON-DISTRIBUTION FUNCTIONS AND QUASI-STATIC ELECTROMAGNETIC-FIELDS IN LASER-PELLET PLASMAS
    BERNSTEIN, IB
    PHYSICS OF FLUIDS, 1977, 20 (04) : 577 - 580
  • [43] Fast Frequency and Material Properties Sweeps for Quasi-Static Problems
    Specogna, Ruben
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [44] DAMAGE ASSESSMENT OF BEAM BY A QUASI-STATIC MOVING VEHICULAR LOAD
    Wang, Chung-Yue
    Huang, Chin-Kuo
    Chen, Chin-Shian
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2011, 3 (04) : 417 - 445
  • [45] Numerical analysis of a quasi-static contact problem for a thermoviscoelastic beam
    Copetti, M. I. M.
    Fernandez, J. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (14) : 4165 - 4173
  • [46] Micromechanical fast quasi-static detection of and relaxations with nanograms of polymer
    Bose, Sanjukta
    Schmid, Silvan
    Larsen, Tom
    Keller, Stephan Sylvest
    Boisen, Anja
    Almdal, Kristoffer
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2015, 53 (15) : 1035 - 1039
  • [47] Generation of a small-scale quasi-static magnetic field and fast particles during the collision of electron-positron plasma clouds
    Kazimura, Y
    Sakai, JI
    Neubert, T
    Bulanov, SV
    ASTROPHYSICAL JOURNAL, 1998, 498 (02): : L183 - L186
  • [48] Coupling the Cell Method with the Boundary Element Method in Static and Quasi-Static Electromagnetic Problems
    Moro, Federico
    Codecasa, Lorenzo
    MATHEMATICS, 2021, 9 (12)
  • [49] GENERATION OF A QUASI-STATIC MAGNETIC-FIELD IN A PLASMA BY A HIGH-INTENSITY ELECTROMAGNETIC-WAVE
    BRODSKII, YY
    ZHAROV, AA
    NECHUEV, SI
    SLUTSKER, YZ
    JETP LETTERS, 1981, 33 (03) : 151 - 155
  • [50] An adaptive h-refinement method for the boundary element fast multipole method for quasi-static electromagnetic modeling
    Wartman, William A.
    Weise, Konstantin
    Rachh, Manas
    Morales, Leah
    Deng, Zhi-De
    Nummenmaa, Aapo
    Makaroff, Sergey N.
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (05):