Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

被引:8
|
作者
Wang, J. [1 ,2 ]
Zhao, Z. Q. [2 ]
He, W. H. [2 ]
Cao, L. H. [3 ]
Dong, K. G. [2 ]
Wu, Y. C. [2 ]
Zhu, B. [2 ]
Zhang, T. K. [2 ]
Zhang, B. [2 ]
Zhang, Z. M. [2 ]
Gu, Y. Q. [2 ]
机构
[1] Fudan Univ, Dept Phys, Shanghai 210433, Peoples R China
[2] Sci & Technol Plasma Phys Lab, Mianyang 621900, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
PLASMA;
D O I
10.1063/1.4897319
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] ACCELERATION OF IONS BY QUASI-STATIC FIELD OF AN ELECTRON-BEAM
    LEBEDEV, AN
    PAZIN, KN
    SOVIET ATOMIC ENERGY, 1976, 41 (04): : 878 - 882
  • [2] TOROIDAL MAGNET IN A QUASI-STATIC ELECTROMAGNETIC-FIELD
    BUZDIN, AI
    TUGUSHEV, VV
    FIZIKA TVERDOGO TELA, 1986, 28 (07): : 2091 - 2096
  • [3] DIFFUSION OF QUASI-STATIC ELECTROMAGNETIC-FIELD IN SPHEROID
    ALEKSIN, VF
    DEMUTSKII, VP
    ROMANOV, SS
    ZHURNAL TEKHNICHESKOI FIZIKI, 1980, 50 (05): : 908 - 914
  • [4] A stable nodal integration method for static and quasi-static electromagnetic field computation
    Feng, Hui
    Cui, Xiangyang
    Li, Guangyao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 336 : 580 - 594
  • [5] Generalized Quasi-Static Electromagnetic Fields
    Yaghjian, Arthur D.
    2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 1655 - 1656
  • [6] Element-free Galerkin method for static and quasi-static electromagnetic field computation
    Xuan, L
    Zeng, ZW
    Shanker, B
    Udpa, L
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (01) : 12 - 20
  • [7] A Modified FEM-DBCI Method for Static and Quasi-Static Electromagnetic Field Problems
    Aiello, Giovanni
    Alfonzetti, Salvatore
    Borzi, Giuseppe
    Dilettoso, Emanuele
    Salerno, Nunzio
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 2803 - 2806
  • [8] Electron Beam Melting of various structures and their quasi-static compression behavior
    Decker, Sabine
    Baumgart, Christine
    Krueger, Lutz
    Schumacher, Axel
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 793
  • [9] Fast Quasi-static Beam Steering via Conformally-Mapped Gratings
    Wu, Liang
    Mellette, William Maxwell
    Schuster, Glenn M.
    Ford, Joseph E.
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XIII, 2019, 11136
  • [10] Electromagnetic angular momentum in quasi-static conditions
    Jimenez, J. L.
    Campos, I.
    Roa-Neri, J. A. E.
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (04)