Factorizations of Schur functions

被引:3
|
作者
Debnath, Ramlal [1 ]
Sarkar, Jaydeb [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, India
关键词
Transfer functions; Block operator matrices; Colligation; Scattering matrices; Schur class; Schur-Agler class; Realization formulas; 32A10; 32A38; 32A70; 47A48; 47A13; 46E15; 93B15; 15; 40; 15A23; 93C35; 30H05; 47N70; 93B28; 94A12; POWER-SERIES; INTERPOLATION; CONTRACTIONS; SCATTERING;
D O I
10.1007/s11785-021-01101-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schur class, denoted by S(D), is the set of all functions analytic and bounded by one in modulus in the open unit disc D in the complex plane C, that is S( D) = similar to.. H 8 (D) : similar to. similar to 8 := sup z. D |.(z)| = 1 similar to. The elements of S( D) are called Schur functions. A classical result going back to I. Schur states: A function. : D. C is in S( D) if and only if there exist a Hilbert space H and an isometry (known as colligation operator matrix or scattering operator matrix) V = similar to a B C D similar to : C. H. C. H, such that. admits a transfer function realization corresponding to V, that is.(z) = a + zB( IH - zD)-1C (z. D). An analogous statement holds true for Schur functions on the bidisc. On the other hand, Schur-Agler class functions on the unit polydisc in Cn is a well-known "analogue" of Schur functions on D. In this paper, we present algorithms to factorize Schur functions and Schur-Agler class functions in terms of colligation matrices. More precisely, we isolate checkable conditions on colligation matrices that ensure the existence of Schur (Schur-Agler class) factors of a Schur (Schur-Agler class) function and vice versa.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Universal Factorizations of Quasiperiodic Functions
    Robinson, Michael
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 588 - 592
  • [32] Elementary Functions and Factorizations of Zeons
    G. Stacey Staples
    Alexander Weygandt
    Advances in Applied Clifford Algebras, 2018, 28
  • [34] FACTORIZATIONS OF BOUNDED HOLOMORPHIC FUNCTIONS
    AHERN, PR
    RUDIN, W
    DUKE MATHEMATICAL JOURNAL, 1972, 39 (04) : 767 - 777
  • [35] FACTORIZATIONS OF TRANSFER-FUNCTIONS
    BART, H
    GOHBERG, I
    KAASHOEK, MA
    VANDOOREN, P
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1980, 18 (06) : 675 - 696
  • [36] Schur Functions and Inner Functions on the Bidisc
    Debnath, Ramlal
    Sarkar, Jaydeb
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2023, 23 (01) : 133 - 163
  • [37] Generalized Schur Functions as Multivalent Functions
    Hendrik Luit Wietsma
    Complex Analysis and Operator Theory, 2021, 15
  • [38] The Schur algorithm and coefficient characterizations for generalized Schur functions
    Constantinescu, T
    Gheondea, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) : 2705 - 2713
  • [39] CHARACTERIZATION OF SCHUR PARAMETER SEQUENCES OF POLYNOMIAL SCHUR FUNCTIONS
    Dubovoy, Vladimir K.
    Fritzsche, Bernd
    Kirstein, Bernd
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2019, 25 (04): : 289 - 310
  • [40] The Schur algorithm for generalized Schur functions II: Jordan chains and transformations of characteristic functions
    Alpay, D
    Azizov, TY
    Dijksma, A
    Langer, H
    MONATSHEFTE FUR MATHEMATIK, 2003, 138 (01): : 1 - 29